Uniandes
Funes
Ministerio de Educacion
Funes

Teoría de números y criptografía

Yazan, Karina; Lasso, Diana (2012). Teoría de números y criptografía. Comunicación presentada en Coloquio Regional de Matemáticas y Simposio de Estadística (Mayo 2012). Pasto, Colombia.

[img]
Vista Previa
PDF - Versión Publicada
Disponible bajo la licencia Creative Commons No Comercial Sin Derivar.

831Kb

Resumen

Históricamente el desarrollo matemático de la criptografia se puede situar alrededor del año 1948 cuando Shannon establece las bases matemáticas de la teoría de la información al publicar Communication Theory of Secrecy Systems" en donde expone un algoritmo cifrado irrompible. En los años 1973-1975 Ellis, Cocks y Williamson desarrollan un algoritmo de cifrado de clave pública para el gobierno británico. Posteriormente, en 1976 Whitfield Diffie y Martin Hellman publican New Directions in Cryptography" que introduce un nuevo método de distribución de claves criptográficas, lo que era hasta la fecha uno de los problemas fundamentales de la criptografia. En 1977 es publicado el algoritmo RSA, llamado así por sus creadores, Ronald Rivest, Adi Shamir y Leonard Adleman, este algoritmo es el primer criptosistema de clave pública utilizado en la práctica y basa su seguridad Factorización Entera (PFE), sin embargo, dado que la longitud de la clave era grande y el tiempo empleado en la trasmisión del mensaje se hacía extenso no tardaron en crearse nuevos criptosistemas que fueran más eficientes, basados en el PLD. Fue así como en 1986 Neal Koblitz y Víctor Miller trabajando de forma independiente proponen usar el PLD en el grupo de puntos de una curva elíptica sobre un campo finito, lo cual permitió desarrollar criptosistemas más seguros y eficientes. Debido al desarrollo de los criptosistemas basados en Problema del Logaritmo Discreto en Curvas Elípticas (PLDCE).

Tipo de Registro:Conferencia, Comunicación, Cartel, Taller, Curso o Participación en Mesa Redonda (Comunicación)
Términos clave:10. Otras nociones de Educación Matemática > Resolución de problemas > Resolución y estrategias
14. Matemáticas superiores > Teoría de números
11. Educación Matemática y otras disciplinas > Educación Matemática desde otras disciplinas
Nivel Educativo:Título de grado universitario
Código ID:11591
Depositado Por:Monitor Funes 1
Depositado En:20 Jul 2018 16:28
Fecha de Modificación Más Reciente:20 Jul 2018 16:28
Valoración:

Personal del repositorio solamente: página de control del documento


Comentarios

Agregar Comentario