Uniandes
Funes
Ministerio de Educacion
Funes

Applying ethnomodelling to explore glocal mathematical knowledge systems

Rosa, Milton; Orey, Daniel Clark (2021). Applying ethnomodelling to explore glocal mathematical knowledge systems. Acta Scientiae. Revista de Ensino de Ciências e Matemática, 23(1), pp. 199-232 .

[img]
Vista Previa
PDF - Versión Publicada
Disponible bajo la licencia Creative Commons No Comercial Sin Derivar.

335Kb

URL Oficial: http://www.periodicos.ulbra.br/index.php/acta

Resumen

Background: ethnomodelling methods examine how members of distinct cultural groups have come to develop local mathematical knowledge. However, what may indeed be less evident is how mathematical thinking can be part of the way in which researchers and educators attempt to make sense of the underlying cultural frameworks within which mathematical ideas, procedures, and practices are embedded. Objectives: the main objective of this theoretical article is to present arguments that link mathematics and culture in order to develop an effective understanding of the development of dialogical mathematical knowledge. Design: the theoretical and methodological concepts of this qualitative study are supported by the assumptions of ethnomodelling that adds an important cultural perspective to the modelling process through the development of an extensive literature review on this topic. Results: we present arguments to show that the linking of mathematics and culture is appropriate and necessary for an effective understanding of the development of dialogical mathematical knowledge, which aims at providing a holistic understanding of human knowledge. This means that cognition is a process that is not only embodied and situated, as well as distributed because the members of distinct cultural groups create, process, accumulate, and diffuse mathematical information conjointly. Conclusions: we discuss the role of ethnomodelling in order to develop an understanding the connection between ethnomathematics and modelling. In this context, we present concepts related to the use of both local (emic), global (etic) approaches by applying the glocal (dialogical) approach found in ethnomodelling research.

Tipo de Registro:Artículo
Términos clave:06. Aprendizaje > Procesos cognitivos > Modelización
12. Investigación e innovación en Educación Matemática > Marcos teóricos > Etnomatemática
05. Profesor > El papel del profesor
12. Investigación e innovación en Educación Matemática > Tipo de investigación > Teórica
Nivel Educativo:Educación Secundaria Básica (13-16 años)
Educación Primaria (7-12 años)
Código ID:28674
Depositado Por:Monitor Funes 2
Depositado En:13 Jun 2022 11:40
Fecha de Modificación Más Reciente:13 Jun 2022 11:40
Valoración:

Personal del repositorio solamente: página de control del documento


Comentarios

Agregar Comentario