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Abstract: Recent research has highlighted the role of functional relationships in 

introducing elementary school students to algebraic thinking. This functional 

approach is here considered to study essential components of algebraic thinking 

such as generalization and its representation, and also the strategies used by 

students and their connection with generalization. This paper jointly describes the 

strategies and representations of generalisation used by a group of 33 sixth-year 

elementary school students, with no former algebraic training, in two 

generalisation tasks involving a functional relationship. The strategies applied by 

the students differed depending on whether they were working on specific or 

general cases. To answer questions on near specific cases they resorted to 

counting or additive operational strategies. As higher values or indeterminate 

quantities were considered, the strategies diversified. The correspondence 

strategy was the most used and the common approach when students generalised. 

Students were able to generalise verbally as well as symbolically and varied their 

strategies flexibly when changing from specific to general cases, showing a clear 

preference for a functional approach in the latter. 

Keywords: algebraic thinking, early algebra, generalisation, strategies, functional 

relationships, representations. 

 

Introduction 

Research on algebraic reasoning at early ages is a fertile field of study with significant 
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implications considering the breadth with which it has been addressed (Cañadas et al., 

2019). Interest in the area has been further prompted by the new century’s demands, 

which call for cultivating the ability to envisage the depth of the structures underlying 

mathematics (Blanton & Kaput, 2005). The early algebra curricular proposal promotes 

instruction in and the development of algebraic reasoning by affording an opportunity 

for deeper and more complex mathematical training from the time children are first 

schooled (Blanton & Kaput, 2005). The proposal has materialised with the inclusion of 

algebraic thinking in various countries’ elementary school curricula (e.g. Common Core 

State Standards Initiative [CCSSI], 2010; Ministerio de Educación,Cultura yDeporte, 

2014;Ministry of Education Singapore, 2012).). In the case of Spain, the elementary 

school curriculum indicates that throughout this stage it is intended that students can 

“describe and analyse situations of change, find patterns, regularities and mathematical 

laws in numerical, geometric and functional contexts, valuing their usefulness to make 

predictions” (Ministerio de Educación, Cultura y Deporte, 2014, p. 33). 

We focus our interest in the functional approach to algebraic thinking that entails 

studying functions, relationships and change (Kaput, 2008). “Thinking in terms of and 

around relationships” (Rico, 2007, p. 56), i.e., functional thinking, is acknowledged to 

be one of the main components of algebraic reasoning (Warren & Cooper, 2005). 

Functional thinking favours the creation of a space for algebraic reasoning-linked 

experience, including reasoning, dealing with, generalising and representing the 

relationships existing between covarying quantities (Blanton et al., 2015; Blanton et al., 

2011; Kaput, 2008; Stephens et al., 2017). 

Within this context, generalization and its representation stand out as essential 

elements of algebraic thinking (e.g., Kaput, 2008; Radford, 2018; Warren et al., 2016). 

As Mason et al. (2005) explain “learners will only understand algebra as a language of 
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expression if they perceive and express generalities for themselves” (p.23). The start 

point is existence of a multiplicity of representations that may be involved in the 

expression of the generalisation (e.g., natural language, algebraic symbolism, graphics) 

(e.g., Blanton y Kaput, 2005; Kaput, 2008; Carraher et al., 2008), either individually or 

combined, as well as other semiotic systems such as gestures (Radford, 2018). There are 

multiple studies in the early algebra framework, from the functional approach, exposing 

the student’s algebraic potential to generalize and represent functional relationships, 

when they receive related instruction (e.g., Blanton y Kaput, 2004; Carraher et al., 2008; 

Warren y Cooper, 2008). In this study we are interested on students who have not 

received any algebraic education. We work with students who are ending elementary 

education and will start their learning of algebra in the following year. In this way we 

aim to provide information related to their skills of use in their later formal study of 

algebra in high school. 

Current research reveals the interest of in-depth studying students’ solving 

strategies in generalisation tasks (e.g., Amit & Neria, 2008; El Mouhayar & Jurdak, 

2015), especially in functional contexts (e.g., e.g. Morales et al., 2018). In elementary 

education, even in the latter years, applying strategies that would lead to effective 

generalisation is a challenge for students (Barbosa et al.; Stacey, 1989; Zapatera 

Llinares, 2018). Some studies suggest that students find difficult to identify and justify 

the functional relationships underlying mathematical problems due in part to the 

strategies used (e.g., Moss & Beatty, 2006). From this insight, the strategies used by 

elementary school students to generalise in functional contexts stand out as a potential 

study area in the algebraic thinking framework to which we pretend to contribute. 
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Research interest 

Within the context described, among the different strategies that students use when 

solving tasks, we pay attention to describing the strategies and representations that 

students use when generalizing as fundamental components of algebraic thinking. The 

joint study of strategies and representations of generalization is one of the contributions 

of this work. This paper aims to identify students’ strategies in two generalization tasks 

and how they represent the generalization of the functional relationships they recognize 

within the variables involved. 

Generalisation and representation 

Generalisation plays an instrumental, even a core, part in mathematics (Mason et al., 

1989). It lies at the heart of algebra (Mason et al., 2005). In their various approaches to 

generalisation, most authors stress recognition of regularity, generation of new cases 

and representation. 

Pólya (1989) conceived generalisation to be the generation of new cases based 

on the regularity identified in a set of elements. Kaput (1999) referred to generalisation 

as extending reasoning beyond the cases considered by either explaining the similarity 

present or broadening reasoning by focusing on patterns, procedures and structures and 

their inter-relationships. Radford (2010) define algebraic generalisation as the ability to 

recognise regularity in a sequence of elements, realise its validity for all the elements of 

the same class and consequently formulate an expression to represent it. Stephens et al. 

(2017) distinguish between generalisation as a process and as a product, defining the 

latter as the result of any of these processes: identifying the regularity across cases, 

reasoning beyond the cases at issue or broadening the results beyond specific cases. In 

this study we assume Kaput’s definition of generalisation (1999) applied to the 
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functional context. It involves identifying, evidencing and representing the regularity 

underlying the task which connects the quantities involved. 

One of the highlights of the generalisation process is progressively symbolic 

representation (Kaput, 2008). Representation is indisputably associated with 

generalisation and algebraic thinking (Kaput, 2008; Radford, 2018). Such thinking is 

not expressed exclusively through algebraic symbolism, however, but also in the form 

of natural language or gesturing, among other ways (Radford, 2018). 

We refer here to (external) representations understood as “assertions in natural 

language, algebraic formulas, graphs or geometric figures, among others, [constituting] 

the medium whereby individuals exteriorize their mental images and representations to 

make them accessible to others” (Rico et al., 1997, p. 101). The term representations of 

generalisation refer to how generalisation is evidenced and externally expressed . 

On the path to generalising functions, students can use and represent different 

relationships they identify between the variables. Smith (2008) distinguishes three types 

of relationships: (a) recursive, that consider the variation of a single variable relating its 

consecutive values, (b) correspondence, which addresses the relationship between pairs 

of corresponding values associated with the independent and dependent variable, and (c) 

covariation, which involves the analysis of how both variables covary, i.e., how the 

change in one variable affects the other. At the same time, the functional relationships 

used by students can be characterized in terms of their structure. The structure refers to 

how the regularity between the variables is organized and expressed (Pinto & Cañadas, 

2017). That is, how indeterminate and/or numerical values are operated when the 

regularity is used or represented. 

Generalisation in primary school continues to strengthen as a field of research 

(Cañadas et al., 2019; Hitt & González-Martín, 2016). Research focuses on how 
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students represent generalisations and the strategies they use to generalise (Kaput, 2008; 

Morales et al., 2018; Ureña et al., 2019; Warren et al., 2016). 

Studies with early elementary and pre-schoolers showed the students were able 

to identify variables and their relationships, use a variety of representations —including 

algebraic symbolism— and understand, represent, and progress in the expression of 

functional relationships, after receiving instruction (e.g., Blanton & Kaput, 2004; 

Blanton et al., 2015; Carraher et al., 2008; Warren & Cooper, 2005, 2008). Other 

authors have also focused on how generalisation is expressed. In a study with students 

from second (7 to 8 years old) to seventh year (12 to 13 years old), Radford (2018) 

observed both symbolic and non-symbolic representations of generalisation. He drew 

attention to the different semiotic systems (such as gesturing, language or symbolism) 

used to express generalisation, contending that each furnishes a different type of 

information on the treatment of and inter-relationships between variables and the 

algebraic structure of the sequences involved in the tasks. In the research by Amit and 

Neria (2008), talented students (11 to 13 years old) represented functional relationships 

linked to patterns through verbal representations, algebraic symbolism, and general 

verbal terms in algebraic expressions as a semi-symbolic representation. 

In functional generalisation contexts, Torres et al. (2019) reported that second-

year students (7-8 years old), without instruction, tended to use numerical and verbal 

representations in their answers, without generalising. Merino et al. (2013) also found 

that fifth graders (10 to 11 years old) mainly used verbal representation to present their 

reasoning. Pinto & Cañadas (2017, 2021) recognized that both third graders (8 to 9 

years old) and mainly fifth graders (10-11 years old), represented verbally the 

generalisation of functional relationships. Ureña et al. (2019) determined that fourth 

year (10-11-year-old) students with no prior instruction in representation or functional 
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tasks used a variety of systems (e.g., numerical, verbal, symbolic) to represent 

generalised functional relationships. 

Strategies and generalisation 

The procedures deployed to solve a problem, draw conclusions from a corpus of ideas 

and establish relationships are known as strategies (Rico, 1997). They inform about 

students’ thinking processes when solving problems. 

A variety of strategies applied in generalization contexts have been described in the 

literature. Stacey (1989) distinguished four strategies: (a) counting the elements on a 

figure, (b) direct proportionality, (c) difference between consecutive terms and (d) 

application of a linear functional model. Later studies such as Merino et al. (2013), 

Morales et al. (2018) and Zapatera Llinares (2018) define similar strategies used in 

generalization tasks. Two new strategies appeared in Merino et al. (2013)’s study: (a) 

the use of arithmetic operations unrelated to specific patterns (i.e. regularities) and (b) 

the repetition of the general statement of the task. It is interesting to notice the 

distinction made by Zapatera Llinares between a local (for a specific term) and global 

(for any term) application of the functional relationship connecting the two variables. 

These studies also report direct answers given without explanation of the process 

followed. 

Stacey (1989) identified instability in elementary students’ use of strategies for near 

(generalising with simple processes such as counting or drawings) and far (entailing 

more complex processes to determine a general rule or pattern) generalisation, along 

with a propensity to choose the simplest rather than the most precise option. Barbosa et 

al. (2012) observed sixth-year students (11 to 12 years old) to perform poorly in 
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generalisation tasks with a visual component; even those earning the highest marks 

counted or used recursive patterning but did not generalise. Merino et al. (2013) pointed 

out that fifth year students (10-11 years old) changed strategies such as counting and 

direct answer in specific cases, to the use of arithmetic operations and, mainly, patterns 

(structures) in far and general cases. Other works highlight functional strategies for 

being linked to generalisation (e.g., Amit y Neria, 2008; El Mouhayar & Jurdak, 2015; 

Stacey, 1989). They consist of expressing, generalising or using implicitly or explicitly 

a functional relationship between two variables. In a similar study with 8- to 12-year-

old students, Zapatera Llinares (2018) found that changing from additive strategies for 

near, to functional strategies (in which they identified and applied a function) for far 

generalisation, guaranteed successful generalisation. Amit and Neria (2008) determined 

that mathematically talented sixth- and seventh-year students (11 to 13 years old) used 

functional and recursive strategies to generalise linear and quadratic patterns. 

Especially, functional strategies stood out for their efficiency and scope to generalise. El 

Mouhayar and Jurdak (2015), also in a generalisation context of linear and quadratic 

figural patterns, focused on studying how the use of strategies from immediate-near 

cases to far-n case (understood as pattern generalisation types) varied in students’ work 

across grades 4 to 11 (9 to 17 years old). They also highlighted recursive and functional 

strategies to be used in all tasks. However, unlike the first, the use of functional strategy 

tended to grow as the demand for generalisation towards the general case increased. 

Another common finding in various of the mentioned studies (e.g., Stacey, 1989; 

Zapatera Llinares, 2018) was the incorrect use of direct proportionality, primarily in 

general cases. 
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Methodology 

This qualitative, descriptive and exploratory study was conducted with 33 sixth-year 

(11- to 12-years-old) elementary school students who volunteered to answer a 

questionnaire as a preliminary for participation in a project designed to stimulate 

mathematical talent ((Ramírez-Uclés & Cañadas, 2018). We intentionally work with 

these students because they were adequate to develop the objectives of the study in that 

we could assume a good attitude towards mathematics and that they would not have 

difficulties to generalise or to work with specific cases. Starting from this hypothesis, 

they could clearly display the strategies to generalise and the respective representations 

of generalisation. 

The whole questionnaire consisted of five problems that address different 

contents (functions, operations with numbers, divisibility, plane measurement, and 

spatial constructions). According to our research interest here we analyse the answers to 

the first problem, the “potato seed” problem, as the only one that involved generalising 

functional relationships through two tasks. It was designed by Ramírez-Uclés & 

Cañadas, (2018) and was analyzed and validated by elementary and secondary teachers 

collaborating with the project. They assessed that the problem involved the ability to 

generalise, was appropriate to the students' age and mathematical knowledge, and was 

progressively complex. We designed this problem guided by the aim of the study. We 

reviewed the existing research literature and used the following criteria. The statement 

of the problem involves verbal and pictorial representation. In the first two specific 

cases the student is invited to make a pictorial representation of the situation. Two tasks 

that follows an inductive organization are derived from the problem and both accept 

different solving strategies. Each task implies a different linear functional relationship 
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and requests justification of the answers, and there exists a dependency between them 

and the underlying functional relationships. 

Task design 

The potato seed problem consists in two tasks related to a same context (Figure 1). In 

the first task students had to determine the number of squares that could be drawn 

having seeds as vertices. The second task asks them to find the value of the sum of the 

orders of all the seeds (the order of a seed is the number of squares that has one of its 

vertices in that seed). The first functional relationship, which depends on the number of 

days, is 𝑓(𝑛)  =  4𝑛 − 6 (by obtaining that each day the number of squares increases by 

four except the first and second day when fewer are formed). The second functional 

relationship, which associates the sum of the orders with the number of squares, is 

ℎ(𝑛)  =  4 ·  (4𝑛 − 6)  =  16𝑛 −  24. 

 

[Figure 1] 

 

The problem required solving both tasks for 3, 4, 100 and n days. This inductive 

approach was adopted to help students visualise the underlying regularity and identify 

and generalise the implicit functional relationships. In line with Amit and Neria (2008), 

this organization can promote a transition from a “warm up” case so that the student 

becomes familiar with the task, a tentative generalisation through the extension of the 

regularity to another specific case, and an informal generalisation through 

representation that the student prefers (e.g., verbally) until reaching a formal 

generalisation with algebraic symbolism. 
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Analysis 

For data analysis we first defined the unit of analysis as each student’s full answer to 

each task. Subsequently, we performed a three-phase analysis. In the initial phase, the 

first author of this paper elaborated two sets of categories using a content analysis 

approach informed by previous research on solving strategies (Amit & Neria, 2008; 

Barbosa et al., 2012; Merino et al., 2013;Morales et al., 2018; Stacey, 1989; Zapatera 

Llinares, 2018), and the representation of generalisation categories defined by Ureña et 

al. (2019). 

To ensure the validity and reliability of the data analysis, in a second phase, 

three of the researchers performed a triangulation by experts. They analyzed a new 

random selection of written productions following the established categories. Once the 

members of the research team agreed on the coding of the results, the categories were 

written in its final form. Finally, after the categories have been established, in the third 

phase of the analysis, each of the students' written productions was exhaustively 

analyzed. 

Below we defined he established categories to analyze the solving strategies. 

• Counting: the result was obtained from the count of some elements in a 

pictorical representation. 

• Additive operationality: the answer was found by explicit or implicit isolated 

additions not related to operations performed in previous or later responses to 

the task. 

• Multiplicative operationality: the answer was found by explicit or implicit 

isolated multiplication or division not related to operations performed in 

previous responses to the task. 
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• Proportionality: proportional reasoning was used to obtain one of the terms as a 

product of others. This strategy is separated from the previous one to emphasize 

the specific reasoning and procedure involved. 

• Correspondence: a correspondence functional relationship between the 

associated variables to describe the situation was established and used. 

• Direct answer: answers were obtained with no specification of the procedure 

followed. 

• Other: the procedure used could not be classified in any of the above. 

Regarding to the representation of the generalisation, the students were deemed to 

express generalisation when they represented a general rule relating the variables 

according to a regularity recognised. Below we describe the categories used to classify 

how generalisation was represented by students. 

● Student does not represent the generalisation. 

● Student represents the generalisation. It is divided into three subcategories that 

are the types of representations of generalisation that we distinguish: 

o Verbal: the detected regularity is expressed through natural language. 

o Symbolic: the detected regularity is expressed by means of algebraic symbolism.  

o Multiple: the detected regularity is expressed using a combination of verbal and 

symbolic representations. 

Three sections were distinguished for analysis: near cases-3 and 4, far case-100 

and general case-n. 
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Results 

Only three students (S41, S14 and S30) identified all the squares that could be drawn 

(Figure 2a). Twenty-seven students only identified the squares that rested on a 

horizontal row (Figure 2b). When considering only this latter type of square, the 

underlying functional relationships structures are: 3𝑛 − 4 for the first task (by 

determining that each day the number of squares increases by 3 except the first and 

second day where fewer are formed) and 4𝑠 = 4(3𝑛 − 4) = 12𝑛 − 16 for the second 

task. As the other three students (S9, S23 and S28) misinterpreted the geometric 

description given (Figure 2c) and furnished information irrelevant to the problem, so 

they were excluded from the analysis. 

 

[Figure 2] 

 

To present the main results we first describe for each of the tasks the strategies used by 

the students to solve the posed cases and obtain answers as a general context that will 

then allow us in next section to delve into those that were related to the generalisation 

and its respective representation. 

Solving strategies used by the students 

In both tasks the students evidenced the use of a diversity of strategies that varied 

depending on the case involved. Students used the same strategies in both tasks, except 

 

1 For reasons of confidentiality each student was assigned a number preceded by the letter S. 
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counting strategy and additive operationality which were inverted as the most and least 

frequent strategies between tasks. Correspondence and direct answer were also among 

the most used. At the same time, stands out a high number of students who do not 

answer the questions. 

The most used and unused strategies are reversed between the first and second 

task, in 3- and 4-day cases. Counting is the most frequent strategy in first task and it is 

not evidenced in the second task, whereas the additive operationality strategy is the 

most used in the second one. This latter strategy is also indirectly based on counting to 

first determine the order of each seed before addition is performed. In general, counting 

did not occur in the final cases in both tasks; in these cases, students did not have 

neither draw any illustrations to support their answers. 

Although in 100- and n-day cases more strategies are observed (e.g., 

proportionality, multiplicative operationality), the correspondence strategy is the most 

widely used in these cases. 

Below we comment separately on the strategies applied by the students in each 

task. 

Task 1. Number of squares 

Counting, correspondence, multiplicative operationality, proportionality, and other 

strategies were used in the solution of this task. Some students also answered directly. 

Table 1 lists the number of students using each type of strategy in the first task, by case 

and globally. 

 

[Table 1] 
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Overall, of the total of ninety productions we analyzed, eighteen times the students did 

not answer, this being more common in n-day case. In the other answers, most used 

strategies were the direct response followed by counting and correspondence. The least 

frequent strategy was additive operationality, that was not applied. 

Counting strategy was used by most of the students (19) to reply to the questions 

with near cases (3 and 4- days). This strategy was used almost exclusively in these 

cases. The students represented all the squares comprising the answer (e.g., Figure 3) 

and sometimes organized them according to their size. This means that the students who 

applied counting based their answers on their pictorial representation of the squares. 

Student S20, for instance, replied that in four days there would be “8 squares, six with 

an area of 1 m2 and two 4 m2”. 

 

[Figure 3] 

 

Strategies were more diversified in 100- and n-day cases students’. Correspondence 

strategy, proportionality and multiplicative operationality were applied, with the first 

strategy being the one most widely used. Ten students (S1, S4, S5, S14, S15, S18, S19, 

S20, S26 and S30) switched from counting to correspondence strategy in the 100-day 

case. Students using the correspondence strategy established a relationship between the 

number of days lapsing and the number of squares. For instance, S1 applied the 

structure 3(𝑛 − 4) + 8 (Figure 4). He used the eight squares that could be drawn in the 

first 4 days as a constant in the functional relationship and defined all other 𝑛 − 4 days 

as the variable term. Analogously, S18 took the five squares formed in the first 3 days 
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as a constant, applying the structure 3(𝑛 − 3) + 5. S19, S15 and S26 answered 

similarly. 

 

[Figure 4] 

 

Applying the correspondence strategy, three students (S5, S20 and S30) left out the 

constant term in the formulation of the structure of the functional relationships. S5 said 

that “you can draw 288 squares, because there are three squares per day” deriving that 

result by multiplying 3 times 96. That is, he used the structure 3(𝑛 − 4). The student 

recognised the regularity but failed to take the number of day 4 squares into 

consideration. On the other hand, S30 represented a multiplicative structure with 

operations and words, using the latter as variables: “Solution=Nº of day × 3”, after 

calculating the squares that could be drawn in the specific cases (Figure 5). Other 

students (S4 and S14) identified a total or partial regularity but used less clear 

structures. S14, for instance, replied that for 100 days “you can draw 200 squares 

because you can always draw two 1 m2 squares plus the total number of days, or 102, 

and two squares less than the total number of days, or 98”. That is, he referred to the 

structure 𝑛 + 2 +  𝑛 − 2 wich is the same as 2𝑛. 

 

[Figure 5] 
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The correspondence strategy was applied by five students (S1, S4, S5, S7 and S14) in n-

day case. Four (S1, S4, S5 and S14) had applied the same strategy in the preceding case, 

where the fifth (S7) had used proportionality. Of the other six students who used the 

correspondence strategy in 100-day case, four (S19, S20, S26 and S30) failed to answer 

in the general case, despite their previous representation of structures. S18 replied 

directly with no clear connection to the previous data and S15 used counting. 

To a lesser extent, proportionality and multiplicative operationality strategies 

were applied in 100- and n-day cases. Five students (S3, S6, S7, S11, S22) applied 

proportionality in 100-day case and three (S3, S22, S11) in the general case. These 

students applied a known formula unrelated to the data in the problem and to their prior 

results. By way of example, S7 used the eight squares she deemed could be drawn after 

4 days (Figure 6). Other three students (S10, S12 and S33) used multiplicative 

operationality in 100-day case. S10 for instance divided “100:2=50 because you can 

draw two squares every day”. In contrast, S12 doubled the 100 days to find 200 squares 

and S33 divided 300 by 4, in what we interpret to be dividing the total number of seeds 

by the number of vertices in a square. In n-day case S10 and S12 resorted to the same 

procedure while other student, S24, assigned the letter a value of 50 and divided by 4 to 

find the solution. Finally, in n-day case one student (S15) applied counting strategy, 

drawing and counting the squares based on the fifth day’s data without evidence of why 

he selected that specific number of days to answer. 

 

[Figure 6] 
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Task 2. Sum of orders 

In the second task, correspondence, multiplicative operationality, proportionality, direct 

answer and other, were used as in the previous task. In this case additive operationality 

was also applied. The strategies used by the students to solve the second task are shown 

in Table 2. 

 

[Table 2] 

 

In this task, almost a third of the students did not answer to the 100-day and n-day 

cases. In their answers they more frequently used the additive operationality, 

correspondence and direct answer strategies, respectively. 

The additive operational strategy is the most used (24 students) in 3- and 4-day 

cases. This strategy as well as the counting strategy, and unlike the other strategies, 

depended on a visual component. The students who used the additive operational 

strategy added both implicitly and explicitly. For instance, S12 took the squares found 

in the 4-day case, numbered each seed and assigned an order to each of them as shown 

in Figure 7. He then summed all the quantities to find the respective solution. 

 

[Figure 7] 

 

Students who specified the order of each seed and then found the total were interpreted 

to add implicitly, given the arrangement of the data (see Figure 8). 
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[Handwritten note: sum of orders = 31] 

Figure .8. S3’s answer, 4-day case 

As in task 1, the strategies used were more varied in 100- and n-day cases and differed 

from those deployed in 3- and 4-day cases, nonetheless, the no answer rate was high for 

the last two cases. 

The correspondence strategy prevailed among the students who answered to the 

100- and n-day cases. Seven (S1, S4, S7, S12, S14, S24 and S30) applied the 

correspondence strategy to 100-day case, changing from the additive operational 

strategy used in the preceding cases. By way of example, S1 expressed the relationship 

between the number of squares and the result of the sum of the orders by contending 

that “each square has four so (4·296) = 1184”. According to his answers to the task, he 

followed the structure 4𝑠, where 𝑠 is the number of squares obtained. S7 y S24 used the 

same correct structure. The rest of the students used other structures. S30, for example, 

represented the structure “𝐷𝑎𝑦 × 9”, consistently with the result of the previous 4-day 

case. Of the seven students who applied this strategy in 100-day case, all except S30 

who did not respond, used the correspondence in n-day case with the same structure. 

The proportional or multiplicative operational strategies were used by a small 

number of students in this task (Table 2). In the 100 and n-day cases, S3 and S11 used 

proportionality, while in 100-day case S15 used multiplicative operationality, which 

both he and S5 adopted in n-day case. S15, for instance, associated the number of 

squares for 100 days with the number of vertices in a square answering ‘800 because 

there are 200 squares and each square has four vertices’, drawing no connection 

between his answer and the previous variables and results. 
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Representations of generalisation and associated strategy 

In all these cases students representing generalisation applied the correspondence 

strategy when solving the task. They established a relationship between variables which 

they generalised and represented. As shown in Table 3 they used different 

representations to express the generalisation. The representations of generalisation in 

both tasks took place in the answers to the questions about cases 100 and n-day. 

 

[Table 3] 

As evidenced in Table 3, although some students did not represent generalisation, they 

did show the recognition of a regularity consistent with the solutions they previously 

obtained. This is observed mainly in case 100 in both tasks. They numerically expressed 

the relationship between the quantities corresponding to each variable when indicating 

the operations performed to reach the answer. For example, in the answer to 100-day 

case in the second task, S24 wrote that the result of the sum of the orders was 244. This 

result was obtained from the multiplication 64 × 4, where 64 was the number of squares 

that they formed in 100 days. That is, he used the structure 4𝑠, where s is the number of 

squares. These students then represented the generalisation in n-day case. The 

exceptions are S15 who in the first task uses counting in the general case, and S24 who 

in the second task maintains the same form of numerical expression. 

Below we comment on the use of each type of representations of generalisation 

exhibited in both tasks. 

Verbal representation 

Of the exhibited representations, the verbal representation of the generalisation stood 
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out as the most frequent in both tasks and mainly in the 100-day case. In the first task in 

100-day case seven students (Table 3) represented the generalisation verbally and three 

in n-day case. They verbalized the indeterminacy of the variables and the generalisation 

of a functional relationship between the number of days (independent variable) and the 

squares (dependent variable). 

Most of the students that represented the generalisation verbally expressed that 

“each day increases by three squares” referring to the relationship between the number 

of squares (dependent variable identified in the problem) that could be drawn and the 

number of days (verbally expressed independent variable). Two students (S1 and S5) 

proposed this verbal expression and used structures such as 3(𝑛 − 4) + 8 (S1, Figure 4) 

or 3(𝑛 − 4) (S5). S20 wrote the equivalent verbal representation “because every day we 

get two 1 m2 squares and one 4 m2 square” and applied the structure 3(𝑛 − 4). In n-day 

case S4, S5 and S7 represented generalisation verbally with very similar expressions to 

those exposed. The variety of structures under similar verbal expressions reflected a 

limited precision of verbal representations of generalisation. Nonetheless, all responses 

in 100-day case are accompanied with their calculations, a clue to understanding the 

structure of the functional relationship to which they referred (see Figure 4, for 

instance). We base our interpretation of their perception of generalisation on the 

grounds of the consistency of the answer with prior results. 

In the second task, the verbal representation of the generalisation was manifested 

by S1 and S7 with expressions such as “the number of squares by 4” that were always 

related to the correct structure 4𝑠, both in 100- or n-day cases. In n-day case S4 used 

another verbal expression “every day increases by 16” that was associated with the 

structure 16𝑛 +  4 applied in 100-day case. 
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Symbolic representation 

The symbolic representation of the generalisation was used exclusively in n-day case 

and only by S1 in both tasks. By using algebraic symbolism, he represented the 

independent variable and the functional relationship that he identified. In the first task 

S1 described the regularity as “you can draw (𝑛 ·  3) because three can be drawn every 

day”. That expression was consistent with the verbal representation he provided in the 

100-day case answer, even though he failed to apply the structure 3(𝑛 − 4) + 8 

determined there (see Figure 4). In the second task he wrote the structure “(𝑛 ∙ 3) ∙ 4” 

which operates the number of squares (𝑛 ∙ 3) found in 100-day case with the value of 

the sum of the orders by multiplying by 4. 

Multiple representation 

The multiple representation of generalisation is the second most used by students in 

both tasks with a slight majority in the n-day case of the second task (two students) 

(Table 3). This representation was characterized by involving the verbal representation 

of the variables as general terms and using numbers connected with arithmetic 

operations to indicate the relationship between the variables in a semi-symbolic 

expression. For example, S30 used this representation in 100-day case in both tasks. In 

first one he wrote the structure “𝐷𝑎𝑦 ×  9” while in the second tasks expressed the 

structure “𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  𝑁º 𝑜𝑓 𝑑𝑎𝑦 ×  3”. In the first task S14, who represented 

verbally in 100-day case, switched to multiple representation in the 𝑛-day. In the 

following excerpt his expression of the regularity perceived lacked clarity to reveal the 

structure 𝑛 + 2 + 𝑛 − 2. 
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You can draw double the number of squares as on the day the seeds are planted. 

The number for day +2 is the number of squares that have an area of 2 m2. The 

number for day -2 is the number of squares with an area of 1 m2. 

For the second task, S12 and S14 went from not representing generalisation, although 

they recognize a regularity in 100-day case, to multiple representation in n-day case. For 

example, S12 represented “(𝑇ℎ𝑒 ‘𝑛’ 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 × 2) × 2 −  4 +

 (𝑡ℎ𝑒 ‘𝑛’ 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 ×  4 −  4)” to obtain the sum of the orders. 

Discussion and conclusions 

This article reports on last-year elementary school students’ problem-solving strategies 

and their ways of representing generalisation in a context of functional thinking and 

within the early algebra frame. They were observed to deploy a variety of strategies, 

exhibiting flexibility to switch approaches between working on specific and general 

cases and to consistently use the same strategy in last cases. However, only a small 

number of students proved able to establish relationships between variables and 

represent the general rule governing the functional relationships underlying their 

solutions. 

Solving strategies 

This study supplements previous research on the strategies used by elementary school 

students in functional generalisation contexts, by describing the strategies deployed by 

sixth-year students without formal algebraic training. It characterizes the strategies used 

in specific and general cases and highlights the most often applied in representing 

generalisation of functional relationships. 
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In near cases the students used two different strategies depending on the task, 

both were related with a visual component. Counting was predominantly used in the 

first task while additive operational was applied in the second one, however, the latter 

also involved counting to obtain the order of each seed before adding. The use of such 

strategies might be related to a visual representation of the problem (e.g., Barbosa et al., 

2012; El Mouhayar & Jurdak, 215; Stacey, 1989) and to the way the tasks were posed: 

in the second task students were asked to find a sum, which prompted them to use 

addition in light of the small number of data involved. In near cases the application of 

these strategies is consistent with results reported in other studies with elementary 

school students (e.g., Barbosa et al., 2012, Merino et al., 2013; Zapatera Llinares, 2018). 

In the same vein, generally the students did not resort to more specific cases than 

the two proposed. The use of pictorial representations is observed almost exclusively in 

these cases when the student is invited to make them. To answer the final cases and to 

represent the generalisation the main resources on which they base their reasoning were 

the numerical answers obtained in previous questions and the numerical expressions 

used to get the numerical computations. This result suggests a focus on the numerical 

rather the visual elements of the tasks and answers (Amit & Neria, 2008; Barbosa et al., 

2012), which may be consequence of the type of learning experiences they have lived. 

In 100-day case student strategies were more diverse. As the term was not a low 

number, neither consecutive or close to the previous ones, students could not continue 

using counting or operationality strategies and, as a consequence, the search of other 

procedures was promoted. Here as in n-day case, the correspondence strategy prevailed 

among the few students replying to the case. This strategy corresponds to the functional 

approach reported in other studies (e.g., Amit & Neria, 2008; El Mouhayar & Jurdak, 
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2015; Lannin et al., 2006; Stacey, 1989) but in our case only involved the 

correspondence relationship. 

One of the primary contributions of this study is the relationship identified 

between the strategies used by last-year elementary school students and the ways they 

represented the generalisation. The correspondence strategy was the sole approach 

found to be associated with the representation of generalisation. The flexibility 

exhibited to switch strategies between specific and general cases was key in addressing 

the problem posed. The study stands out that switching to the correspondence strategy 

in the latter cases was an indication that other strategies were impractical in such cases, 

as students applied functions consistently in the last two cases. The study shows the 

scope of the correspondence strategy, allowing to represent the generalisation or show 

the recognition of a regularity in line with other studies that highlight functional 

strategies in generalisation tasks (e.g., Amit & Neria, 2008; El Mouhayar & Jurdak, 

2015; Zapatera Llinares, 2018). That would suggest that the correspondence strategy is 

the one best suited to establishing relationships between data, ensuring coherence with 

prior answers and the problem posed. We agree that the use of this strategy was 

motivated by the proposal of distant cases and the cognitive demand in the transition 

from specific and familiar cases to cases that required more efficient and advanced 

strategies to solve and generalise (El Mouhayar & Jurdak, 2015; Lannin et al., 2006). In 

the first task fewer students used the correspondence strategy in the 𝑛-day case than in 

the 100-day case (Table 1), even after generalising in the latter, perhaps because they 

deemed they had completed the task or because they failed to understand the meaning of 

the alphanumerical symbolism. 

We identified more diversity in the structures of functional relationships in the 

first task attributable to the fact that the functional relationship was more complex than 
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in the second task (with multiplicative structure 4𝑠). We found that the diversity of 

structures, the modifications in the structures from one to another case, as well as the 

use of structures that do not fully correspond to the proposed tasks or the students' own 

results, may be due to errors in calculation or a trend focused on responding rather than 

refining responses. Another reason is the difficulty of the tasks that involved modelling 

non familiar situations (Lepak et al., 2018). 

One finding likewise reported by other authors (Barbosa et al., 2012; Stacey, 

1989; Zapatera Llinares, 2018) was the inappropriate use of proportionality, attributable 

to the desire to apply an efficient solving procedure (Lannin et al., 2006) or the incorrect 

over-generalisation of learned knowledge (Stacey, 1989). By contrast, some strategies 

identified in prior studies were not detected here. Despite being a common 

generalisation approach, recursive strategy (e.g., Amit & Neria, 2008; Carraher et al., 

2008; Stacey, 1989) were not used by these sixth-year students, perhaps due to the near 

absence of consecutive cases and the potential of students in the search for efficient 

strategies. 

Three groups of strategies were identified based on the coherence between the 

cases of each task as students progressed from case to case. The first group (direct 

answer and additive and multiplicative operational) consisted in procedures or reasoning 

applied to specific or isolated cases. In the second group (correspondence) students 

reasoned based on prior data, extending their reasoning to more general cases. In the 

third (proportionality and other) students applied reasoning associated with prior 

formulas or knowledge unrelated to the nature of the data in the problem posed or 

applied a strategy based exclusively on the data found in the immediately preceding 

case to find the answer to the case at hand. 
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Representations of generalisation 

The representations of generalisation of functional relationships evidenced by sixth-

grade students are another of the contributions of this research. We identified three 

representations considering the written nature of the task presented: verbal, symbolic 

and multiple representations. In this study, we reorganised the representations of 

generalisation proposed by Ureña et al. (2019) according to if the student evidences the 

recognition of a regularity and represents the generalisation (verbally, symbolically or 

multiple) or does not represent it. 

An interesting result is that some of the students who used the correspondence 

strategy showed evidences of having detected and used a regularity although they did 

not represent the generalisation. It is an important finding that calls the attention 

towards cases in which students might be working with the functional relationships in 

an implicit way. This result could be due to the numerical nature of the case in question 

(100-day case) since most of these students represented generalisation in the n-day case 

(Table 3). 

Generalisation was represented by more students in the first than in the second 

task. We consider that this finding could be due to the organization of the problem and 

the dependence that could be seen between the responses of the second task with those 

of the first task, in which the failure to answer or to correctly answer a case rendered it 

nearly impossible to identify a regularity. Eleven students represented generalisation in 

the first task, seven in the second and five in both (Table 3). 

Generalization was most often represented verbally in both tasks, predominantly 

in the 100-day case. This result coincides with other investigations that recognize in 

primary school the use of verbal (and numeric) representations in general cases (e.g. 

Pinto & Cañadas, 2021; Torres et al., 2019). It is attributable both to the comfort and 
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familiarity with these representations (Merino et al., 2013), their reduced use of pictorial 

representation and their inexperience with other types of representations. 

As has been seen, the symbolic representation has not been an indispensable 

requirement to represent the generalisation. In fact, the symbolic representation was 

exhibited by one student in both tasks and only in n-day case. In the same line, students 

who shown multiple representation of generalisation also were able to identify, work 

with and represent indeterminate variables and hence express the functional relationship 

perceived. They used words as variables in algebraic expressions. We could recognize 

this last no conventional representation as a previous step to represent generalisation 

symbolically or even as semi symbolic representation (Amit y Neria, 2008). We reflect 

that this representation reveals the achievement of an algebraic maturity to express the 

generalisation in a general way, prior to the experience with formal algebra. 

From the results we highlight the flexibility of sixth grade students to use 

different representations and change them between one case and another. The variety of 

representations corroborate students' algebraic thinking (e.g., Amit & Neria, 2008;; 

Kaput, 2008; Radford, 2018). Each expression of generalisation shows in a different 

way the variables, their relationships and the conceptual deepness with which they have 

been approached (Radford, 2018). Unlike symbolic or multiple representation, where 

the variables are explicit and the structure of the functional relationship is evident, in the 

verbal representation or in the responses of the students who do not represent but use 

the correspondence strategy, these are implicit. 

As expected, students found it easier and were more prone to work with specific 

(where more students answered the questions) than general cases (e.g.Barbosa et al., 

2012; Ureña et al., 2019; Zapatera Llinares, 2018). The explanation may be that the 

tasks involved demands associated with inter-cases dependency, their limited 



29 

 

experience with generalisation problems such as the one proposed or the connection 

with the visual component from which students generalise information. An inadequate 

illustration or a poor visualization ability would influence the results they determine and 

the strategies they would use to solve them (Lannin et al., 2006). In n-day case one 

student even explicitly contended indeterminacy of the independent variable to be 

inconceivable, whilst others assigned the letter a fixed numerical value and solved from 

that perspective. Similar results have been reported for younger students (e.g., Molina et 

al., 2018; Ureña et al., 2019). Such evidence reinforces the idea to foster generalisation 

with tasks involving familiarisation with indeterminacy and its representations as a 

preamble to formal algebra instruction. 

Unlike Ureña et al. (2019) fourth-year students, none of the sixth-year 

elementary schoolers used the generic representation generalisation. They found that 

representing the independent variable as “any” or “any number” prompted students to 

use generic examples. In their study outside mediation also induced participants to 

represent generalisation. The absence of such expressions in the wording of the cases 

used here may have contributed to students not representing generalisation in that way. 

However, we identified evidences of the multiple representation that were not evidenced 

by the fourth graders. We could conjecture that multiple representation is associated 

with more mathematical knowledge and experiences. Similar representations were 

highlighted by Amit and Neria in 11-13 years old mathematically talented students. 

Other authors (e.g., Blanton & Kaput, 2004; Blanton et al., 2015; Carraher et al., 2008; 

Warren & Cooper, 2005, 2008) reported younger students’ ability to understand, 

represent functional relationships of varying complexity and even prove their reasoning 

with more specific cases. Those students had received instruction dealing with such 

content. The students in this study, further to the elementary school curriculum, were 
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only expected to be able to identify patterns and regularities (Ministerio de Educación, 

Cultura y Deporte, 2014). That supports the idea that students of different ages are 

prone to functional thinking but need reinforcement and guidance to develop it fully. In 

the context of early algebra, then, this study is believed to furnish information on how 

students reaching the end of elementary school generalise and express functional 

relationships with no prior explicit training in those areas. 

The instruction becomes essential to guiding students' experience, for it helps 

them organize their thoughts to find the right problem-solving strategies (Stacey, 1989). 

We highlight the need to provide spaces in which students learn and progressively 

develop increasingly advanced strategies to develop mathematical competences, 

including generalisation. This study also reports on the importance of analysing the 

procedures deployed and the inter-data relationships established, factors associated with 

the habit of checking one’s answers. Consistently with other studies (Barbosa et al., 

2012; Stacey, 1989), the students participating here did not verify the generalisation 

defined, a failure possibly attributable to their scant experience in this regard. 

In another vein, while able to express generalisation, students failed to represent 

their reasoning clearly and methodically possibly due to lack of appropriate verbal 

skills. Other studies reported that students who identified variables and their inter-

relationships were scantly able to express them clearly (Radford, 2018; Ureña et al., 

2019). In our study that was attested to by the sparsity and even ambiguity of students’ 

explanations. In this sense, the development and strengthening of students' 

communication skills for the adequate and accurate expression of their ideas and 

reasoning becomes also relevant (Barbosa et al., 2012). 

In light of our findings and the importance of furthering algebraic reasoning 

beginning in elementary school, the study suggests that a number of issues (e.g., 
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flexibility in the use of solving strategies, greater and better development of 

generalisation tasks in functional contexts and pre-algebra studies prior to formal 

instruction in secondary school) should be explored and attended in greater depth to 

promote spaces that motivate students to identify and represent generalisation in 

different ways.  

Finally, we recognize the low number of participants as well as the consideration 

of only written answers as limitations of this study. Furthermore, as the findings are 

based on students who volunteered to participate, the research would benefit from 

supplementary information gathered from other sources involvingmore participants and 

students of other ages. 
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Table 1. Strategies used by students (N=30) in task 1, by case 

Strategies 
3- and 4-day 

cases 100-day case n-day case 
Cumulative 

total 
Counting 19 0 1 20 
Additive operationality 0 0 0 0 
Multiplicative operationality 0 3 3 6 
Correspondence 0 10 5 15 
Proportionality 0 5 3 8 
Direct answer 10 7 4 21 
Other 0 1 1 2 
No answer 1 4 13 18 
Total 30 30 30 90 

 



 

 

Table 2. Strategies used by students (N=30) in task 2, by case  

Strategies 
3- and 4-day 

cases 100-day case n-day case 
Cumulative 

total 
Counting 0 0 0 0 
Additive operationality 24 3 0 27 
Multiplicative operationality 0 1 2 3 
Correspondence 0 7 6 13 
Proportionality 0 2 2 4 
Direct answer 3 4 5 12 
Other 0 2 3 5 
No answer 3 11 12 26 
Total 30 30 30 90 

 



 

 

Table 3. Students (N=30) representing generalisation 

 Task 1 Task 2 

 100-day case n-day case 100-day case n-day case 

Identifies a regularity 
but does not 
represent 

2(S4, S15)  4(S4, S12, S14, 
S24) 

1(S240) 

     
Identifies a regularity 
and represents 

    

Verbal 
7(S1, S5, S14, S18, 

S19, S20, S26) 
3(S41, S50, 

S7) 
2(S1, S7) 2(S41, S70) 

Symbolic  1(S11)  1(S11) 

Multiple 
1(S30) 1(S141) 1(S30) 2(S121, 

S141) 

Total 
11 (S1, S4, S5, S7, S14, S15, 

S18, S19, S20, S26, S30) 
7 (S1, S4, S7, S12, S14, S24, 

S30) 
Note. 0= The student used the same representation of the generalisation between 100 -day case and n-

day case. 1= The student used a different representation of the generalisation in last both cases. 
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Figure captions 

Figure 1. The potato seed problem 

Figure 2. Geometric representation of the squares: a. All squares, b. Squares resting on 

rows, c. Different interpretation 

Figure 3. S1’s answer, n-day case. [Handwritten note: “You can draw 8 squares”] 

Figure 4. S1’s answer, 100-day case. [Handwritten note: “Three are added each day. So 

(3·96)+8 = 296”] 

Figure 5. S30’s answer, 100-day case. [Handwritten note: day 5 (15); day 6 (18). Solution 

= No. of days x 3. 100 x 3 = 300 squares] 

Figure 6. S7’s answer, 100-day case. [Handwritten note: Small = 1 m2; large=4 m2. If in 

4 days there are 8 squares and in 3 days there are 5, we know that with each day there are 3 more, 

so after 100 days we’d have 200 squares] 

Figure 7. S12’s answer, 4-day case 

Figure 8. S3’s answer, 4-day case 


