ANÁLISIS EPISTEMOLÓGICO DE LA NOCIÓN DE LÍMITE EN UN CONTEXTO COMPUTACIONAL

María del Carmen Bonilla Tumialán
Pontificia Universidad Católica del Perú Perú
mc_bonilla@hotmail.com, mbonilla@pucp.edu.pe
Campo de investigación: Epistemología, Visualización Nivel: Medio

Resumen. El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.

Palabras clave: transposición informática, experimentación, noción de límite

Introducción

Numerosas investigaciones constatan el fracaso de las aproximaciones teóricas y formales que se desarrollaron en el contexto de las matemáticas modernas, y de las estrategias de enseñanza usuales, que reducen el Análisis a un cálculo algebraico algorítmizado (Artigue, 1998). La dificultad de los alumnos para entrar al campo conceptual del cálculo ha generado numerosos trabajos que analizan las causas de esta problemática (Artigue, 1995), como el no partir de problemas al introducir las nociones, el empleo temprano de un lenguaje formalizado y una enseñanza centrada en el discurso del profesor.

El desarrollo de la práctica de la matemática en las tres últimas décadas ha establecido nuevos tipos de prueba y argumentación, cambiándose las normas establecidas en el área (Hanna, Jahnke y Pulte, 2006). Los cambios se han producido por el uso de las computadoras (como recurso heurístico o como medio de verificación), por un nuevo tipo de relación de las matemáticas con la tecnología, y por un fuerte inconsciente en la naturaleza social de los procesos que guían la aceptación de una prueba. Estos cambios se han reflejado en la filosofía de la matemática.

Durante años los filósofos han tratado de definir la naturaleza de las matemáticas tomando en cuenta sus fundamentos lógicos y su estructura formal. En los últimos 40 años la búsqueda ha
cambiado de dirección. El enfoque de la comprensión matemática ha cambiado profundamente. El primero en destacar estos cambios fue Imre Lakatos (1978), al considerar a las matemáticas como una ciencia cuasi-empírica. Se genera un cambio en la concepción de la matemática, considerándosela ahora como una actividad humana, histórica, que no se descubre sino se construye, que tiene como fin la resolución de problemas intra o extramatemáticos, y que debe equilibrar la exigencia del saber matemático con la exigencia del funcionamiento cognitivo del estudiante.

Marco Teórico

Con el fin de lograr la transposición informática de la noción de límite a contextos computacionales se ha articulado un conjunto de constructos teóricos correspondientes a distintos enfoques de la Educación Matemática y sus ciencias auxiliares, constructos que abordan diferentes aspectos de la práctica educativa, y que, por lo tanto, no son antagónicos sino, por el contrario, se complementan. La confluencia de los temas, su interrelación, proporcionan cimientos a la propuesta didáctica, como se puede apreciar en el esquema siguiente. (Figura 1).
Propuesta Didáctica

Las actividades diseñadas en Cabri II plus corresponden a diferentes sistemas de prácticas (Godino, 2006) de la noción de límite (límite de sucesiones y límite de funciones). En un primer momento, en base a la resolución de un grupo de problemas de carácter geométrico diseñados por Hitt y Páez (2003) se procura un acercamiento intuitivo a la noción de límite de sucesiones (Figuras 2 y 3). En la segunda parte se trabaja en la construcción geométrica de la noción de límite de funciones, por intuición (figuras 4 y 5) y por entornos (figuras 6 y 7). En cada sistema de prácticas las actividades se inician básicamente con la interpretación geométrica y, en el proceso de construcción y manipulación, se artican las representaciones aritmética y algebraica, procurando que sea el alumno quien elabore la explicación y deduzca la definición formal.

Límite de sucesiones

![Figura 2](image1)

![Figura 3](image2)

Límite de funciones

Por intuición

![Figura 4](image3)

![Figura 5](image4)
Por entornos

![Figura 6](image1.png) ![Figura 7](image2.png)

Objetivos de la investigación

- Elaborar el análisis epistemológico de la práctica matemática desarrollada en las actividades elaboradas en Cabri II plus sobre límites de sucesiones y límites de funciones utilizando como unidad básica de análisis a la configuración epistémica.

- Identificar dentro de las actividades propuestas a la visualización y experimentación computarizada como una forma de argumentación matemática, dentro de los recursos heurísticos.

- Analizar la repercusión de las actividades propuestas en el franqueamiento de algunas dificultades, u obstáculos epistemológicos, que se presentan en la enseñanza y aprendizaje de la noción de límite.

Análisis epistemológico

El Enfoque Ontosemiótico de la Cognición e Instrucción Matemática (Godino, 2006) considera en el nivel microdidáctico a las configuraciones, en este caso configuraciones epistémicas, conformadas por el lenguaje, las situaciones problema, las definiciones, las proposiciones, los procedimientos y los argumentos, los cuales constituyen los objetos intervinientes y emergentes
de los sistemas de prácticas. A continuación se muestra la configuración epistémica de las actividades sobre límite de funciones.

<table>
<thead>
<tr>
<th>Lenguaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal: Función, dominio, rango, abcisa, ordenada, entorno, lugar geométrico.</td>
</tr>
<tr>
<td>Gráfico: Gráfica de una función.</td>
</tr>
<tr>
<td>Simbólico: P = punto sobre el eje x, Q = punto sobre el eje y, R = punto de la función, f(x) = función, L = límite de la función, a = valor al que tiende x.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Situaciones Problema</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Qué tan cerca de a debe estar P para garantizar que el punto Q de la función f(x) esté a una distancia de L menor que E?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conceptos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previros: Sistema de ejes cartesianos, función, lugar geométrico, semirrecta, recta perpendicular, distancia, coordenadas, intervalo abierto.</td>
</tr>
<tr>
<td>Emergentes: Interpretación geométrica del límite de funciones. Entorno o vecindad, cambios infinitamente próximos, noción de límite de funciones. Noción analítica de igualdad.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propiedades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completitud de los números reales. Propiedades de la distancia. Propiedades de las desigualdades. Asociación de la recta real con los números reales.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argumentos Heurísticos</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Procedimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción de la gráfica de la función. Construcción gráfica de las vecindades alrededor de a y L. Visualización intuitiva del límite por el desplazamiento del punto en la función.</td>
</tr>
</tbody>
</table>

Argumentación matemática

Hanna (1996) señala que con el uso de la computadora en la práctica de la matemática hay un número creciente de matemáticos que trabajan fuera de los confines de la demostración deductiva, confirmando experimentalmente propiedades matemáticas, de ahí que los métodos experimentales han adquirido una nueva respetabilidad. Se aprecia cada vez más la potencia de la computadora para *comunicar* conceptos matemáticos. Las matemáticas experimentales también juegan un papel en el descubrimiento de demostraciones formales, no las eliminan. Tal vez la pregunta importante que debemos hacernos hoy no es ¿Cómo demuestran los matemáticos los
teoremas?, sino, ¿Cómo ellos hacen progresar la comprensión de la matemática en el hombre? El docente es quien juzga si vale la pena darle más atención a la demostración para promover el objetivo didáctico de la comprensión.

En ese contexto las actividades propuestas no persiguen reemplazar la demostración formal de las nociones, sino procurar una mayor comprensión de su definición y demostración formal, proporcionando inicialmente una argumentación matemática heurística. Las actividades tienen un carácter experimental que transita por el camino del descubrimiento. Se procura la visualización del concepto, la verificación de las propiedades y la manipulación de los objetos matemáticos representados con ayuda del software. La experimentación computarizada ha producido un impacto epistemológico (Moreno, 2002), pues favorece la comprensión y explicación de los conceptos y procesos matemáticos, debido principalmente al proceso de reificación de los objetos matemáticos, dándoseles un alma propia. El Cabri II plus constituye un manipulable virtual que facilita el aprendizaje, y que tiene la capacidad de hacer visible lo que es difícil de ver e imposible de imaginar, pues ayuda a pasar del nivel concreto al abstracto de una forma más sencilla (Eduteka, 2003).

Efectos en las dificultades en el aprendizaje de la noción de límite

Una dificultad presente en la comprensión de toda noción matemática es la de articular los diferentes registros semióticos (escrito, verbal, gráfico, gestual, material). Bosch (2000) nos señala la no diferenciación entre registros desde el punto de vista de su función en el trabajo matemático. Todos tienen igual valor. Es más, según Blázquez (2001), dominar un concepto consiste en conocer sus principales representaciones y traducir unas en otras. Las actividades propuestas consiguen articular en forma simultánea representaciones algebraicas, gráficas y numéricas de la noción de límite a través del movimiento.

Otro aspecto que también corresponde al aprendizaje de toda noción matemática es la flexibilidad proceso-concepto (Artigue, 1995). Existen dificultades para desarrollar la distinción entre las nociones vistas como proceso y las nociones vistas como objeto. Los objetos matemáticos presentan dos status: el operacional, dinámico, y el estructural, estático. En las actividades propuestas se aprecian los procesos de construcción de las nociones de límite, visualizando el
cambio gracias al carácter dinámico del Cabri, superando así las limitaciones de la representación geométrica tradicional.

En el enfoque tradicional la formalización estándar de la noción de límite expresa una dificultad asociada a su carácter poco natural, al construirse una vecindad alrededor del límite, utilizando cuantificadores ε y δ que complejizan la definición. Desde una perspectiva histórica existe un salto cualitativo entre el manejo intuitivo de la noción de límite y la noción formalizada estándar. Esta última rompe con las concepciones previas de la noción. En las actividades sobre límite de funciones se procura establecer a través del arrastre (drag) una articulación entre las representaciones geométrica, algebraica, y aritmética de los cuantificadores ε y δ, y por ende, una mejor comprensión del enunciado formal. La geometría dinámica vence a una geometría estática que no permite ver los objetos involucrados en la noción de límite y su topología subyacente. Con la presente propuesta didáctica se busca sentar las bases para el desarrollo de una aproximación experimental e intuitiva del pensamiento analítico.

Referencia Bibliográfica

