UNA VINCULACIÓN DE LA MATEMÁTICA ESCOLAR Y LA INVESTIGACIÓN A TRAVÉS DE DISEÑOS DIDÁCTICOS CON EL USO DE LA TECNOLOGÍA

Alma Rosa Pérez Trujillo, Gabriela Buendía Abalos
Universidad Autónoma de Chiapas (Facultad de Humanidades) México
Centro de Investigaciones en Ciencia Aplicada y Tecnología Avanzada.
CICATA–IPN
almarpt@hotmail.com, gbuendia@ipn.mx
Campo de investigación: Socioepistemología Nivel: Medio y Superior

Resumen. Este trabajo de investigación ha centrado la atención en generar diseños didácticos que aborden temas del Cálculo y Precálculo del currículo actual, cuyos fundamentos teóricos están basados en investigaciones de corte socioepistemológico favoreciendo el uso intelectivo de la tecnología en el aula de matemáticas. En éstos se retomarán aspectos que ayuden a la reconstrucción de significados de tópicos matemáticos como el teorema de Thales, el uso de la subtangente para caracterizar una curva (máximos, mínimos y puntos de inflexión) y la noción de acumulación para abordar el área bajo la curva.

Palabras clave: socioepistemología, cálculo, precálculo, diseños didácticos

La problemática

Al seno de la investigación sociopistemológica en la Matemática Educativa se han realizado diversas investigaciones sobre Cálculo y Precálculo en las que se han propuesto resignificaciones de diversos tópicos a partir de un análisis epistemológico e histórico, con la finalidad de enriquecer y rediseñar el discurso matemático escolar (Buendía, 2004; Castañeda, 2004; Cordero, 2003).

No obstante, aunque el objetivo de muchas de estas investigaciones quiera ser el impacto en el quehacer cotidiano del profesor en el aula, el sentir generalizado de los profesores es la falta de vinculación entre sus necesidades y las investigaciones que se llevan a cabo. Entendemos que el maestro no realiza estas adecuaciones ya que dentro de su desempeño laboral cuenta con distintas restricciones de tipo curricular, de tiempo, de cantidad de alumnos, etc. Esto hace que aunque el investigador proponga que los resultados de su investigación sean aplicables dentro del aula no siempre se diseñan situaciones escolares para ser llevadas al aula. La experiencia nos dice que existen profesores, con cierto perfil, que sí han hecho estas adecuaciones a los resultados de las investigaciones o han aplicado en su aula cotidiana las situaciones sugeridas por el investigador; estas experiencias indican que los resultados de investigación pueden ser llevados al aula.
Por otra parte, si hablamos de investigaciones que involucren aspectos tecnológicos, la situación parece complicarse ya que, de acuerdo a Ursini (2006), el uso de la tecnología implicaría que los profesores se vean a sí mismos como agentes de cambio y que acepten enfrentar situaciones no predecibles de antemano y en un ambiente tecnológico en el cual ellos mismos no fueron educados.

Con base en lo anterior, retomaremos la propuesta socioepistemológica con relación a la construcción del conocimiento matemático. En ella, no son los objetos matemáticos y su adquisición la metáfora para explicar cómo se construye la matemática; la propuesta es crear un modelo del conocimiento matemático que dé cuenta de lo que constituye su contenido y poner al descubierto las causas reales del desarrollo social de tal conocimiento (Cordero, 2008). La Socioepistemología pretende entonces, desarrollar estrategias de investigación de naturaleza epistemológica donde ésta sea entendida como el estudio de las circunstancias que favorecen la construcción del conocimiento. Creemos que una epistemología fundamentada en prácticas sociales, en contraposición de una de objetos matemáticos, favorecerá el establecimiento de relaciones funcionales, alejadas del utilitarismo, entre los diversos tópicos del saber matemático (Cordero, 2003).

Nuestro trabajo busca así establecer un vínculo entre la matemática escolar y las investigaciones realizadas bajo la perspectiva socioepistemológica, vía diseños didácticos que hagan uso de la tecnología. Este último punto nos sitúa en la realidad del aula del siglo XXI.

Marco teórico y metodológico

Las dimensiones didáctica, epistemológica y cognitiva han sido abordados por diferentes esquemas explicativos para dar cuenta de la construcción del conocimiento matemático de tal manera que el paradigma dominante ha sido el objeto matemático como la metáfora para explicar cómo se construye el conocimiento. Si vemos a las Matemáticas como una construcción hecha por seres humanos, que surge como consecuencia de darle respuesta a problemáticas en particular, consideramos que la perspectiva epistemológica debe cambiar, ya que se debe considerar al ser humano haciendo matemáticas y diseñar situaciones. El análisis de dichas prácticas debe conformar el aspecto social en el estudio de la construcción del saber matemático estableciéndose
así un marco en el que lo social interactúe de manera sistémica con las dimensiones didáctica, epistemológica y cognitiva del saber para brindar una explicación más robusta acerca de su construcción. Al resultado de la conjunción de estas cuatro dimensiones, se le ha llamado aproximación socioepistemológica (Cantoral, 2000). Uno de sus objetivos es la formulación de epistemologías de prácticas o socioepistemologías que den cuenta de aquello que constituye al saber matemático.

Sin embargo, esas prácticas tienen que reformularse, reinterpretarse para lograr llegar al aula. Si bien, son el fundamento epistémico en la construcción del saber en cuestión, se les tiene que imprimir intencionalidad y hacerlas explícitas a fin de favor la resignificación de dicho saber; esto es, la reconstrucción del saber en una situación particular.

Es por eso que nuestro objetivo es proponer una vinculación entre las investigaciones socioepistemológicas sobre Cálculo y Precálculo a través de diseños didácticos, favoreciendo el uso inteligente de la tecnología.

Fundamento teórico de los Diseños Didácticos

A continuación presentamos tres diseños didácticos los cuales retoman aspectos de investigaciones socioepistemológicas y que hemos agrupado de la siguiente manera: 1) Comportamiento de las curvas a través de las subtangentes, 2) Área bajo la curva y, 3) La visualización en los criterios de semejanza.

El primero de ellos se construyó con base en la caracterización geométrica-analítica analizada por L’Hospital y Agnesi y que fue descrita por Castañeda (2004). Identificamos al *uso de la curva* como aquel que resignifica a los puntos críticos como el máximo o el mínimo. Con el diseño que aborda el área bajo la curva en un contexto de variación, se pretende favorecer intencionalmente prácticas de *acumulación* a fin de resignificar la función área. En el tercer diseño se plantea la visualización en los criterios de semejanza; en él se analiza el comportamiento de una figura no estática, para *visualizar argumentos* que permitan resignificar los criterios de semejanza de triángulos; en particular el Teorema de Thales.
Comportamiento de las curvas a través de las subtangentes

En su investigación, Castañeda (2004) presentó un estudio sobre el complejo proceso en la construcción del discurso escolar del cálculo en las obras de difusión: el Analyse des infinitment petits, del marqués L’Hospital y el Analitiche Institutioni, de Maria Gaetana Agnesi. De forma particular se aborda el estudio de la evolución del tratamiento del punto de inflexión y se destaca de forma amplia el tratamiento que estos autores le dan a ciertas ideas, como la de máximo de una función usando la subtangente. Para este diseño se decidió utilizar el pizarrón electrónico como herramienta tecnológica, ya que su utilización tiene como características, la sensibilidad al tacto. Esta cualidad permite controlar la exposición directamente desde la pantalla del pizarrón electrónico como si se estuviera utilizando el ratón o el teclado; se puede desplegar información y ejecutar programas de aplicación contenidos en la computadora, como se muestra en la siguiente imagen (ver figura 1):

![Figura 1. Uso del pizarrón electrónico](image)

El uso del pizarrón electrónico está apoyado en el empleo del software apropiado, como Cabri Geometre o Geometer’s Sketchpad, además de que las construcciones del diseño se proporcionan al estudiante. Una de las ventajas que observamos al hacer las construcciones por computadora apoyados en los software mencionados y no de manera tradicional utilizando lápiz y papel, es la libre manipulación y verificación de la construcción, además, de las ventajas que proporcionan las múltiples realizaciones y hacer ajustes en las construcciones para producir un resultado deseado. El diseño propone el establecimiento de un vínculo entre la magnitud de la subtangente y el comportamiento de las curvas dadas. Es decir, pretende incorporar la caracterización del máximo, mínimo o punto de inflexión de una función a través del comportamiento y variación de las subtangentes (ver figura 2).
Con el diseño se favorece la manipulación de los elementos geométricos, ya que al variar la magnitud de la abscisa, el sistema geométrico que se ha definido en la curva se modifica y sus cambios son susceptibles a ser cuantificados, más aún cuando la manipulación puede hacerse de forma automática al hacer uso de las herramientas que ofrecen paquetes computacionales como Cabri Geometre o Geometer’s Sketchpad, además de las bondades del pizarrón electrónico mencionadas anteriormente.

Área bajo la curva

Nuestra propuesta basándonos en la investigación de Cordero (1998, 2003 y 2005), es la elaboración de un diseño didáctico que nos permita retomar la noción de acumulación para abordar el área bajo la curva. En el diseño didáctico se propone el manejo del área de un cuadrilátero (figuras 3a, 3b, 3c y 3d) de forma dinámica a fin de que dicha área pueda ser vista como una función, una función de la variable lado. Se generan regiones en el plano por medio de desigualdades para después visualizar primero cómo se modifica el área al cambiar una de las desigualdades que le dio origen y se analiza numéricamente cómo varía el área por medio de tablas que se generan con los datos correspondientes a la base y altura de la región (ver figura 4a y 4b).

El objetivo del diseño es que mediante aspectos visuales y numéricos de las funciones y en un escenario de variación facilitado por la calculadora se pueda concebir que el área es una función.
La visualización en los criterios de semejanza

Para este diseño, usamos como fundamento teórico investigaciones que abordan el uso de semejanza de triángulos y proporcionalidad (Cantoral, 2004; Patricio, García y Arrieta, 2005). En su investigación Cantoral narra una experiencia en el aula, donde un profesor supone: 1) que la proporcionalidad, derivada de la semejanza, es una propiedad bajo el control del estudiante y 2) que la noción de pendiente, como una propiedad invariante de la recta está estabilizada en la mente de sus estudiantes. Además reporta que estudios recientes, muestran lo inexacto de este punto de vista.

Patricio, García y Arrieta (2005) reportan que aún cuando se introduce como razón trigonométrica el seno, dicha razón queda desligada de la práctica de hacer semejanza con triángulos. Confirman con su estudio que la semejanza no es un argumento para determinar el seno de un ángulo. El discurso indica que el “conocimiento” que han adquirido en el contexto escolar no es utilizado.

Con base en estas investigaciones, nosotros proponemos analizar las proporciones en las construcciones geométricas elaboradas con la calculadora gráfica para fin de resignificar criterios de semejanza entre triángulos. En este diseño se propone como primer paso la construcción de una figura compuesta por las recta AB y AC que comparten el mismo punto A. La recta DE cruza a las dos anteriores de cualquier manera. Enseguida, se dibuja una recta paralela a DE de tal manera que también cruce por las rectas AB y AC. De tal forma que han construido dos triángulos: AGH y AFI (Ver figura 5a y 5b). Realizamos el análisis de algunas propiedades que se presentan en esta construcción. Para ello, se generan varios triángulos más con el vértice común A, creando otras rectas paralelas a través del menú dinámico de la calculadora (figura 5c), y como último paso, se
realiza la comparación y análisis de de las proporciones \(\frac{AG}{AH} \) y \(\frac{AF}{AI} \) tomando en cuenta que AF y Al son de todos los triángulos formados (figura 5d). En la construcción presentada podemos ver que: \(\frac{AF_1}{AI_1} = \frac{AF_2}{AI_2} = \frac{AF_3}{AI_3} = \ldots \) Esta igualdad surge por la semejanza de los triángulos implicados (ver figura 5d).

Figura 5. Construcción de la figura y el trabajo con la calculadora

La calculadora se percibe como una herramienta que favorece habilidades de visualización. Para el caso de este diseño, se utilizó el menú dinámico de la calculadora: además de facilitar la medición de gran número de segmentos, permite percibir una figura geométrica no estática. El comportamiento que puede visualizarse en la gráfica fundamenta argumentos para darle significado a los criterios de semejanza de triángulos; en particular el Teorema de Thales.

Conclusiones

La intención de este trabajo ha sido establecer un vínculo entre la matemática escolar y los resultados de investigaciones de corte Socioepistemológico a través de diseños didácticos con el uso de la tecnología, ya que consideramos que éstos nos permiten mostrar aspectos que favorecen la generación de significados para diferentes saberes matemáticos.

Con esto lo que se pretende es hacer evidente que desde el marco teórico que sustenta este estudio, es posible mirar que el avance de la tecnología no es un obstáculo para la matemática escolar, si no por el contrario es una herramienta de utilidad que brinda mucha y diversas posibilidades en cuanto a su aplicación y uso en el aula de matemáticas.
Referencias bibliográficas

Categoría 5 Uso de recursos tecnológicos en el proceso de aprendizaje de las matemáticas

Latinoamericana de Matemática Educativa 18. pp. 619-624. México: Comité Latinoamericano de Matemática Educativa AC.