ASIGNACIÓN DE PROBABILIDADES EN PROFESORES EN FORMACIÓN

Juan Jesús Ortiz, Nordin Mohamed, Luis Serrano y Jesús Rodríguez
Universidad de Granada, España
jortiz@ugr.es
Campo de investigación: Pensamiento relacionado con probabilidad, estadística
Nivel: Superior

Resumen. En este trabajo presentamos parte de los resultados de un estudio de evaluación del razonamiento probabilístico de maestros en formación. Para ello analizamos las respuestas a tres ítems sobre asignación de probabilidades, tomados de Green (1983), en una muestra de 167 futuros profesores de Educación primaria. Se comparan el porcentaje de respuestas correctas y los argumentos utilizados con los obtenidos por los niños de 10-14 años que participaron en la investigación de Cañizares (1997). Concluimos con algunas implicaciones para mejorar nuestra acción didáctica de formación de profesores en el campo de la probabilidad.

Palabras clave: probabilidad, formación de profesores, educación estadística

1. Introducción

El interés de la enseñanza de la probabilidad se ha visto reforzado en España por el Real Decreto que establece las enseñanzas mínimas para la Educación primaria (MEC, 2006), donde se incluye un bloque sobre Tratamiento de la información, azar y probabilidad desde el primer ciclo. Este documento enfatiza la necesidad de iniciar lo antes posible el estudio de los fenómenos aleatorios y de hacer la enseñanza más activa y exploratoria, suscitando el interés de los alumnos y su valoración de los conocimientos estadísticos para la toma de decisiones. Estas recomendaciones también se recogen en los currículos de otros países (ej., NCTM, 2000; SEP, 2006).

Pero un cambio efectivo de la enseñanza de la probabilidad requiere mejorar la formación de los profesores (Stohl, 2005), pues, sin una formación específica, podrían transmitir a sus estudiantes sus creencias, a veces erróneas (Ortiz, Mohamed, Batanero, Serrano & Rodríguez, 2006). Un requisito, por tanto, es conocer las competencias probabilísticas de los futuros profesores de educación primaria.
2. Problema y objetivos

Debido a la importancia que está adquiriendo la enseñanza de la probabilidad, incluso en los niveles de primaria, donde el maestro es el encargado de impartir estos contenidos, nos planteamos la cuestión de qué conocimientos de probabilidad tienen los futuros profesores de educación primaria sobre problemas elementales de probabilidad, en particular, problemas relacionados con la asignación y comparación de probabilidades.

Pretendemos realizar una evaluación inicial de la capacidad de los futuros profesores de educación primaria para resolver problemas elementales de probabilidad y analizar después las semejanzas o diferencias con los resultados obtenidos por los alumnos participantes en la investigación de Cañizares (1997). En este trabajo presentamos parte de los resultados de un estudio de evaluación del razonamiento probabilístico de maestros en formación. Para ello analizamos las respuestas de 167 estudiantes de magisterio a tres ítems tomados de Green (1983), estudiando los porcentajes de respuestas correctas y los argumentos proporcionados por los alumnos. Nos apoyamos en el marco teórico del enfoque ontosemiótico (Godino, Batanero & Font, 2007), según el cual, las prácticas observables realizadas por los futuros profesores para resolver estos problemas elementales de probabilidad son los indicadores empíricos que nos permiten evaluar sus conocimientos.

Consideramos de interés este tipo de trabajo ya que como indican numerosas investigaciones, que exponemos a continuación, es fundamental conocer los conocimientos que sobre el contenido matemático y pedagógico de probabilidad tienen los futuros profesores. A partir de ahí podremos diseñar y poner en práctica una instrucción adecuada para mejorar la formación probabilística de los maestros. A continuación describimos la investigación previa, la metodología y los resultados obtenidos.

3. Investigaciones previas

3.1. Formación en probabilidad de futuros profesores

Aunque hay algunos trabajos interesantes sobre el conocimiento que necesitan los profesores para enseñar probabilidad (Fischbein, 1975; Steinbring, 1991; Kvatinsky & Even, 2002), las investigaciones sobre formación de profesores, en el caso de la probabilidad, son limitadas. A
pese de ello progresivamente se está formando un cuerpo de conocimientos que señala la existencia de concepciones erróneas y dificultades en relación a la probabilidad en este colectivo (Azcárate, 1995; Franklin & Mewborn, 2006). Otros trabajos muestran que los docentes tenían un conocimiento poco sólido de la probabilidad (Begg & Edwards, 1999; Watson, 2001; Nicholson & Darnton, 2003; Pereira-Mendoza, 2002) y del contenido pedagógico (Haller, 1997; López, 2006; Dugdale, 2001). Otras experiencias de enseñanza basadas en la simulación (Sánchez, 2002; Batanero, Godino y Cañizares, 2005), parecen ayudar a la superación de algunos sesgos en el razonamiento de los futuros profesores.

3.2. Comprensión de la probabilidad en niños y adolescentes

La investigación sobre la capacidad de comparar probabilidades, comienza con Piaget & Inhelder (1951), quienes describen diferentes niveles, en función de las estrategias y respuestas correctas, utilizando como dispositivo experimental bolas en urnas, fichas y otros materiales. Otros autores han continuado este trabajo (Falk, 1983; Fischbein, Nello & Marino, 1991; Jones, Langrall, Thornton & Mogill, 1997; Way 1996), donde en tareas de elección binaria han descubierto que muchos estudiantes, especialmente los jóvenes, basan su elección en juicios idiosincrásicos o en un razonamiento restrictivo que se centra en el número de casos favorables. Otros estudios (Cañizares, Batanero, Serrano & Ortiz, 1997; Cañizares & Batanero, 1998) destacan que la mayoría de los alumnos al finalizar la educación primaria demuestran una adecuada concepción de la probabilidad, aunque el contexto en el que se presenta el problema (discreto o continuo) y algunos sesgos en el razonamiento probabilístico han mostrado su efecto sobre la dificultad de estos problemas.

4. Método

Los participantes fueron 167 maestros en formación de la Facultad de Educación y Humanidades de Melilla (Universidad de Granada), de los tres cursos y de todas las especialidades salvo Educación Especial y Audición y Lenguaje, con una edad media de 20 años. A continuación reproducimos los ítems del cuestionario, que se aplicó antes de la instrucción:
Ítem 1.- Una clase de matemáticas tiene 13 niños y 16 niñas. Cada nombre de los alumnos se escribe sobre un trozo de papel. Todos los trozos se ponen en un sombrero. El profesor saca uno sin mirar. Señala la frase correcta:

(A) Es más probable que el nombre sea de un niño que de una niña

(B) Es más probable que el nombre sea de una niña que de un niño

(C) Es igual de probable que sea un niño que una niña

(D) No lo sé

¿Por qué?

Ítem 2.- Dos cajas distintas tienen fichas negras y blancas: Caja G: 12 negras y 4 blancas. Caja H: 20 negras y 10 blancas. ¿Qué caja da mayor posibilidad de sacar una ficha negra?

(A) La misma posibilidad

(B) Caja G

(C) Caja H

(D) No lo sé

¿Por qué?

Ítem 3.- La figura muestra dos discos (ruletas) que tienen agujas que una vez giradas se detienen y apuntan a un número. ¿Con qué disco es más fácil obtener un 3? Señala la respuesta correcta:

(A) Es más fácil obtener 3 en el disco rojo

(B) Es más fácil obtener 3 en el disco azul

(C) Los dos discos dan la misma posibilidad de obtener 3

(D) No lo sé

¿Por qué eliges esa respuesta?
5. Resultados y discusión

Análisis ítem 1

Los resultados de los futuros profesores son mejores que los obtenidos por los alumnos (10-14 años) participantes en la investigación de Cañizares (1997). El porcentaje de respuestas correctas de los futuros profesores es del 86.7%. Por otro lado, un 8,3% elije el distractor C, que afirma que los dos sucesos son equiprobables. Consideramos que la respuesta (C) es debida a una incorrecta asociación intuitiva entre aleatoriedad y equiprobabilidad (Lecoutre, 1992), por la cual para algunos alumnos un resultado que sea impredecible equivale a que todos los sucesos implicados tienen la misma probabilidad de ocurrencia.

La justificación mayoritaria proporcionada por ellos es la correcta “porque hay más niñas que niños” (70,8%), seguida de los que aplican la regla de Laplace y responden que es debido a que “la probabilidad de niña es mayor” (15,9%). Esta última estrategia no es utilizada por ningún alumno (10-14 años), lo que se puede considerar lógico, ya que, o no la conocen, o la han tratado de forma superficial. Sin embargo hay un importante porcentaje de futuros profesores que considera que “se debe al azar” (5,8%) y un (7,5%) que contesta de forma ambigua o no contesta.

Análisis ítem 2

Los resultados obtenidos por los futuros profesores, un 75% de respuestas correctas, son también algo mejores que los obtenidos por los alumnos (10-14 años). La mayor dificultad de este ítem se encuentra en que aunque existe proporcionalidad entre los casos favorables y desfavorables, la proporción no es la misma en cada urna. Aunque los futuros profesores son conscientes de esta falta de equivalencia, hay un alto porcentaje (18,3%) que elige la opción C, que considera que en la caja H hay más probabilidad de obtener una ficha negra, al haber mayor cantidad absoluta de casos favorables o mayor diferencia entre casos favorables y desfavorables. Respecto a la investigación de Cañizares (1997) los futuros profesores usan más estrategias correctas, en general multiplicativas y correspondencias, lo cual corresponde a mayor razonamiento proporcional, aunque un grupo importante usa la comparación absoluta de casos favorables o desfavorables y estrategias aditivas.
Análisis ítem 3

El porcentaje de respuestas correctas de los futuros profesores (88,4%) es bastante mejor que los alumnos (10-14 años). Destaca un significativo porcentaje de futuros profesores (7,5%), aunque inferior que los alumnos (10-14 años), que manifiestan el sesgo de equiprobabilidad, que son los que eligen la respuesta C. En este ítem, la justificación más utilizada está basada en la idea de área (46,7%), seguida de las que utilizan la regla de Laplace (23,3%) y de las que responden haciendo referencia al número de secciones de las ruletas (16,7%). En cuanto a los argumentos incorrectos, aparecen los que opinan que es debido al azar o por otro motivo (9,1%). En relación con la investigación de Cañizares (1997), las principales diferencias son que los futuros profesores utilizan la regla de Laplace mientras que los alumnos (10-14 años) no lo hacen, y también que los argumentos basados en áreas y en el recuento de secciones son más utilizados por los alumnos que por los futuros profesores.

6. Conclusiones

Aunque la mayoría de los maestros en formación demuestren una adecuada concepción de la probabilidad, obteniendo resultados mejores que los alumnos que participaron en la investigación de Cañizares (1997), este estudio indica que, a pesar de ser bastante elementales los problemas planteados, existen dificultades en su resolución por parte de algunos futuros profesores. Hay porcentajes importantes de ellos que manifiestan el sesgo de equiprobabilidad en el problema de la clase y en el de las ruletas, y que utilizan la comparación de casos favorables o desfavorables y estrategias aditivas en el problema de las urnas. La variable contexto, discreto o continuo, observamos que ha influído cuando comparamos los resultados del ítem 2 (urna con bolas) y del ítem 3 (ruletas), siendo mayor el porcentaje de respuestas correctas en este último caso, en ambos colectivos. Con respecto a los argumentos pertinentes, el área solo aparece en el contexto de ruletas, mientras que la regla de Laplace y casos favorables/casos desfavorables, son utilizados en ambos contextos, aunque la regla de Laplace es más utilizada en los contextos de ruletas, y el último es utilizado mayoritariamente en los contextos de bolas. Esto se explica como consecuencia de que la ruleta, favorece el establecimiento de las relaciones parte-todo (o regla de Laplace), mientras que en los contextos de bolas esta consideración del “todo” no viene impuesta, y por lo tanto, favorece el establecimiento de relaciones parte-parte. En cuanto a los argumentos no
pertinentes, el contexto tiene aquí también un fuerte impacto, pues el argumento de diferencia que no aparece en el contexto de ruletas, es utilizado para las respuestas incorrectas en contextos de bolas. Esta fuerte influencia del contexto en los argumentos de los alumnos pone de manifiesto que problemas equivalentes desde el punto de vista probabilístico, no lo son forzosamente en el plano cognitivo.

Una vez finalizado el estudio completo de los conocimientos probabilísticos de los futuros profesores, con la información obtenida podremos diseñar y poner en práctica una instrucción adecuada para mejorar la formación probabilística de los maestros, que debe incluir las componentes didácticas básicas (Batanero, Godino & Roa, 2004) y realizar un cambio metodológico que incida en el trabajo basado en proyectos, resolución de problemas, experimentación con fenómenos reales y utilización de la simulación, que, además de mejorar la comprensión proporcionan modelos de la forma en que han de trabajar en clase con sus alumnos.

Referencias bibliográficas

Sánchez, E. S. (2002). Teachers beliefs about usefulness of simulations with the educational software Fathom for developing probability concepts in statistics classroom. En B. Phillips (Ed.),

