Uniandes
Funes
Ministerio de Educacion
Funes

Generalizing is necessary or even unavoidable

Otte, Miguel F.; Mendonça, Tânia Maria; de Barros, Luiz (2015). Generalizing is necessary or even unavoidable. PNA, 9(3), pp. 143-164 .

[img]
Vista Previa
PDF - Versión Publicada
Disponible bajo la licencia Creative Commons No Comercial Sin Derivar.

328Kb

URL Oficial: http://www.pna.es

Resumen

The problems of geometry and mechanics have driven forward the generalization of the concepts of number and function. This shows how application and generalization together prevent that mathematics becomes a mere formalism. Thoughts are signs and signs have meaning within a certain context. Meaning is a function of a term: This function produces a pattern. Algebra or modern axiomatic come to mind, as examples. However, strictly formalistic mathematics did not pay sufficient attention to the fact that modern axiomatic theories require a complementary element, in terms of intended applications or models, not to end up in a merely formal game.

Tipo de Registro:Artículo
Términos Temporales (Editor):Genetic epistemologyMathematical cognition
Términos clave:06. Aprendizaje > Cognición
Nivel Educativo:Todos los niveles educativos
Código ID:6437
Depositado Por:Pedro Gómez
Depositado En:24 Feb 2015 12:07
Fecha de Modificación Más Reciente:17 Jul 2015 16:22
Valoración:

Personal del repositorio solamente: página de control del documento


Comentarios

Agregar Comentario