Otte, Miguel F.; Mendonça, Tânia Maria; de Barros, Luiz (2015). Generalizing is necessary or even unavoidable. PNA, 9(3), pp. 143-164 .
![]()
| PDF - Versión Publicada Disponible bajo la licencia Creative Commons No Comercial Sin Derivar. 328Kb |
URL Oficial: http://www.pna.es
Resumen
The problems of geometry and mechanics have driven forward the generalization of the concepts of number and function. This shows how application and generalization together prevent that mathematics becomes a mere formalism. Thoughts are signs and signs have meaning within a certain context. Meaning is a function of a term: This function produces a pattern. Algebra or modern axiomatic come to mind, as examples. However, strictly formalistic mathematics did not pay sufficient attention to the fact that modern axiomatic theories require a complementary element, in terms of intended applications or models, not to end up in a merely formal game.
Tipo de Registro: | Artículo |
---|---|
Términos Temporales (Editor): | Genetic epistemologyMathematical cognition |
Términos clave: | 06. Aprendizaje > Cognición |
Nivel Educativo: | Todos los niveles educativos |
Código ID: | 6437 |
Depositado Por: | Pedro Gómez |
Depositado En: | 24 Feb 2015 12:07 |
Fecha de Modificación Más Reciente: | 17 Jul 2015 16:22 |
Valoración: |
Personal del repositorio solamente: página de control del documento