Concepciones acerca de la noción de límite

Joffre Mayela Hernández y Martín Andonegui Zubala
Universidad Centroccidental Lisandro Alvarado y Universidad Pedagógica, Barquisimeto Venezuela
joffinh@yahoo.com.ve y ioritz@hotmail.com

Resumen
El presente estudio tiene como objetivo fundamental determinar las concepciones de los estudiantes de educación Superior acerca de la noción de límite. Para ello, se clasificaron las diferentes concepciones que aparecen a lo largo de la historia (Edward, 1979) y se relacionaron con una serie de obstáculos epistemológicos (Sierpinska, 1985). De este modo pudieron derribarse catorce posibles tipos de concepciones acerca de la noción de límite.

Para el estudio se elaboró un instrumento conformado por catorce ítems, aplicado a una muestra de 59 estudiantes –de semestres iniciales y avanzados- seleccionados al azar en dos Universidades de Barquisimeto (Venezuela). Las respuestas y sus justificaciones fueron organizadas y analizadas revelando que los estudiantes reconocen la definición formal de límite; sin embargo, no existe consistencia en las concepciones de los alumnos pues, al momento de resolver un problema, utilizan la concepción que más se adapte al ejercicio; además, las concepciones predominantes son las del límite como una aproximación, como un movimiento físico y como un valor inalcanzable.

Antecedentes
La construcción de la noción de límite se presenta como una de las dificultades más evidentes en el aprendizaje del cálculo. Para los estudiantes el significado de límite varía de acuerdo a la situación; de hecho, son capaces de resolver problemas, de completar ejercicios sin tener el conocimiento de la definición formal. Cabe destacar que la mayoría de los conceptos matemáticos siempre son ensayados en referencia a conocimientos previos, y en el caso del límite, el alumno tiene algunas ideas, intuiciones, imágenes y conocimientos que provienen de experiencias personales. Este conocimiento no desaparece con una definición formal; más bien ésta es modificada y adaptada a la concepción personal del alumno. La formalización de este concepto en educación superior se basa en este significado; los estudiantes continúan confiando en su conocimiento previo después de analizada la definición formal. Por tal motivo es preciso conocer las concepciones de los alumnos que ya estudiaron la noción de límite con el fin de analizarlas como obstáculos cognitivos y generar vías para superar estos últimos.

Divemos autores (Sierpinska, 1985; Cornu, 1991; Williams, 1991; Tall, 1992; Sierra y otros, 2000; Seydlik, 2000) expresan que las dificultades de comprensión del concepto del límite que presentan los alumnos son difíciles de superar, aun cuando este concepto es considerado como central para el análisis matemático y aún cuando median refuerzos didácticos por lograrlo.

La razón de este problema radica en dos factores. Por un lado, la complejidad del propio concepto de límite. Por otro lado y en correspondencia con lo anterior, están las creencias y concepciones que los alumnos adquieren intuativamente a partir de su experiencia de interacción con la realidad y con las ideas, o como consecuencia de los procesos de aprendizaje a los que son sometidos formalmente.
Los autores se refieren a este segundo aspecto con diversas expresiones, aunque en el fondo comparten las ideas: "concepto-imagen" (Tall, Vinner, 1981; Dreyfus, Vinner, 1989); imágenes mentales asociadas a las expresiones utilizadas para la introducción de un tema; "modelos expresados" (Robert, 1982); componentes del concepto, representaciones desarrolladas en la mente del alumno; "concepciones espontáneas" (Corno, 1983); intuiciones, imágenes y conocimientos a partir de su experiencia diaria; "creencias sobre contenidos y sobre fuentes de convicción" (Seydlitz, 2000); presunciones personales "acerca de la naturaleza de la realidad, criterios que el sujeto considera pertinentes; "obstáculos epistemológicos" (Bacheller, 1987; Sierpńska, 1985); elementos esenciales e inevitables del conocimiento a construir y que pueden fallarse en el desarrollo histórico de tales conceptos, así como en los procesos de construcción individual de los mismos.

La referencia a lo histórico resulta fundamental y esclarecedora. El cuadro siguiente muestra lo que podría considerarse como el desarrollo histórico de la noción de límite (Edwards, 1979):

Eudoxo de Cnido (c.408 - c.355 a.C.)	Método de Exhausión
Arquímedes de Siracusa (287-212 a.C.)	Método de Compensación
Galilei (1771-1730)	Uso del método de los indivisibles
Newton (1642-1727)	Método de fluxiones
Leibniz (1646-1716)	Cálculo Infinitesimal
Euler (1707-83)	Concepto de función
Cauchy (1789-1857)	Combinación de definición de infinitesimal
Weierstrass (1815-97)	Concepto formal de límite

Forma: \[\lim_{x \to a} f(x) = L \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in (a - \delta, a + \delta) \Rightarrow |f(x) - L| < \epsilon \]
En cuanto al análisis de los obstáculos epistemológicos presentes en los procesos de construcción del concepto de límite en los alumnos, Sierpinska (1985) presenta estas categorías de obstáculos:
1. Horror infiniti (horror al infinito)
2. Ligados a la noción de función
3. Geométricos
4. Lógicos
5. Derivados del uso del símbolo.

Análisis de los resultados

Partiendo de estos antecedentes, se realiza este estudio (Hernández, 2000) en el que se pretende determinar las diferentes concepciones de los estudiantes de Educación Superior de Barquisimeto (Venezuela) acerca de la noción de límite y analizar los obstáculos epistemológicos presentes en tales concepciones. Para ello se seleccionó una muestra de cincuenta y nueve (59) alumnos —todos ellos con un primer curso de Cálculo aprobado— de los principales universidades de Barquisimeto, configurada así:

<table>
<thead>
<tr>
<th>Instituto</th>
<th>Alumnos - Semestre</th>
<th>N° de Pruebas Aplicadas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPEL</td>
<td>Iniciales (4)</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Superiores (7)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>UCLA-Ciencias</td>
<td>Iniciales (2)</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Superiores (7)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>UCLA-Agronomía</td>
<td>Iniciales (2)</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Superiores (8)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>59</td>
</tr>
</tbody>
</table>

UPEL: Universidad Pedagógica, Instituto Pedagógico de Barquisimeto
UCLA: Universidad Centrooccidental Lisandro Alvarado

El instrumento aplicado a los alumnos consistía en una primera parte I) en la cual se le pedían los datos de identificación del estudiante y dos ítems con los cuales se pretendía obtener información acerca del conocimiento personal de la noción de límite. La segunda parte II) del instrumento estuvo conformada por doce ítems relativos a situaciones en las que el alumno debía utilizar el concepto de límite para responder a cuestiones de carácter teórico o para resolver (con su correspondiente justificación) algunos ejercicios de cálculo de límite. Para el análisis de los datos se diseñaron tablas de frecuencia y porcentajes en las cuales se presentaba el número de respuestas obtenidas por cada ítem.
F: Frecuencia promedio; I: Alumnos de semestres iniciales; S: Alumnos de semestres avanzados; Cs: UCLA-Ciencias; Agr: UCLA-Agronomía; T/E: Totales de estudiantes El porcentaje global de ítems respondidos por toda la muestra es de 57.4%. Así, pues, casi la mitad de los ítems —en promedio— quedó sin responder. Y en cuanto al índice de respuestas por universidades, es relativamente bajo, particularmente en el caso del Decanato de Agronomía de la UCLA, donde los alumnos dejan de contestar tres en cada cinco ítems de la Parte I. También se observa que, para toda la muestra, es mayor el porcentaje de respuestas dadas por los alumnos de semestres avanzados (69.2%) que de los semestres iniciales (48.1%).

Luego se procedió a estudiar las respuestas dadas por los estudiantes a cada ítem del instrumento, para lo cual se realizó un análisis cualitativo mediante la evaluación de las justificaciones presentadas por los alumnos en sus respuestas. Se trató de ubicarlas en alguno de los posibles criterios de concepción de límite, de acuerdo con la siguiente tabla de referencia:

<table>
<thead>
<tr>
<th>Código</th>
<th>Concepto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Formal: uso de y; referencia a los entornos de ambas variables.</td>
</tr>
<tr>
<td>2</td>
<td>Dinámica: referencia a movimientos de las variables, indistintamente de que se alcance o no el límite.</td>
</tr>
<tr>
<td>3</td>
<td>Límite como cota, valor máximo infranqueable.</td>
</tr>
<tr>
<td>4</td>
<td>Valor inalcanzable</td>
</tr>
<tr>
<td>5</td>
<td>Predominio del infinito potencialmente actual: el límite se alcanza "en el infinito"</td>
</tr>
<tr>
<td>6</td>
<td>Aproximación susceptible de hacerse tan exacta como se desee; proceso de inducción incompleta.</td>
</tr>
<tr>
<td>7</td>
<td>Monotonia Estática: después de cierto término, todos tienen igual valor.</td>
</tr>
<tr>
<td>8</td>
<td>Transfiera al límite las propiedades de los elementos.</td>
</tr>
<tr>
<td>9</td>
<td>Transfiera procedimientos algebraicos finitos a cantidades infinitas.</td>
</tr>
<tr>
<td>10</td>
<td>Intentar el uso de alguna fórmula; entiende el límite como valor de la función en el punto.</td>
</tr>
<tr>
<td>11</td>
<td>Interpretaciones de carácter geométrico.</td>
</tr>
<tr>
<td>12</td>
<td>Existencia de dos procesos diferenciados, uno por cada variable.</td>
</tr>
<tr>
<td>13</td>
<td>Uso incorrecto de los cuantificadores.</td>
</tr>
<tr>
<td>S/0</td>
<td>Sin justificación</td>
</tr>
<tr>
<td>N/C</td>
<td>No contestido</td>
</tr>
</tbody>
</table>
Los resultados de este análisis llevaron a la construcción de la siguiente tabla, referida a la utilización de las diversas concepciones de límite (1 a 13) en cada uno de los ítems (I-1 a II-12) (la X en cada casilla indica presencia de la concepción en el item correspondiente):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-4</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-5</td>
<td></td>
</tr>
<tr>
<td>II-6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-7</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-9</td>
<td></td>
</tr>
<tr>
<td>II-10</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-11</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>II-12</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

En esta tabla se puede observar que en 10 de los 14 ítems propuestos, los alumnos utilizaron varias concepciones para dar las respuestas a cada uno de los ítems, lo que indica que el formato del ejercicio determina el uso de la concepción; en otros palabras, "despierta" la concepción a utilizar. También se puede afirmar que las concepciones 8 (transferir al límite propiedades de los elementos) se utilizó aisladamente y la concepción 9 (transferir procedimientos algebraicos) no se utilizó en ningún ítem.

Dada la variabilidad en el uso de las concepciones por ítem y por alumno en este estudio, se consideró como alumnos consistentes a aquellos que usan un mismo criterio de concepción en al menos un 50% de sus respuestas. Los resultados de clasificar a los alumnos desde esta perspectiva – consistencia en el uso de las concepciones – se presentan en la siguiente tabla:

<table>
<thead>
<tr>
<th>Alumnos</th>
<th>Consistentes</th>
<th>Inconsistentes</th>
<th>N/C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr</td>
<td>7</td>
<td>31</td>
<td>21</td>
<td>59</td>
</tr>
<tr>
<td>%</td>
<td>11.9</td>
<td>52.5</td>
<td>35.6</td>
<td>100</td>
</tr>
</tbody>
</table>

N/C: alumnos que dejaron sin responder más de la mitad de los ítems del instrumento.

Se puede observar que el número de alumnos inconsistentes es mayor (52.5%); esto indica que la mayoría de los alumnos utilizan varias concepciones al momento de resolver cualquier problema, sin rastro de que predominé, mientras que un 11.9% de los alumnos mantienen una concepción predominante dentro de la variabilidad de sus respuestas.

A modo de conclusión

Puede decirse que los resultados obtenidos en este trabajo ratifican los presentados por...
otros autores (Sierpinska, 1985; Mamona-Downs, 1990; Williams, 1991; Dibus y otros, 1996; Sierra y otros, 2000; Szydluck, 2000), en cuanto a que:

1. El enfoque centrado en el análisis de los obstáculos epistemológicos, elaborado desde una perspectiva histórica, resultó correcto y útil.

2. Existe diversidad de criterios de concepción de límite por parte de los estudiantes. Estos aplican varias concepciones para resolver los distintos problemas planteados. También se evidencia que el formato del ejercicio es el que estimula el uso de la concepción: de acuerdo con el ejercicio se utiliza la concepción que se crea conveniente.

3. En la mayoría de las tareas exigidas en los ítems propuestos, los estudiantes utilizan simultáneamente, en cada uno de ellos, varias concepciones de límite.

4. La definición formal de límite es reconocida como verdadera por la mayoría de los estudiantes (79,7%); pero cuando se trata de seleccionar espontáneamente la concepción que se estima como verdadera o práctica, la selección de la definición formal queda reducida a un 25% de la muestra.

5. Las concepciones utilizadas con más frecuencia en la resolución de problemas resultaron ser:
 - Concepción 2: Dinámica: referencia a movimiento de las variables, indistintamente de que se alcance o no el límite.
 - Concepción 4: Valor inalcanzable.
 - Concepción 6: Aproximación susceptible de hacerse tan exacta como se desee; proceso de inducción incompleta.
 - La concepción formal apenas se hace presente en la resolución de las tareas exigidas por los ítems.

6. El uso de estas concepciones lleva a concluir que uno de los enclaves epistemológicos presentes en el estudiante es la ausencia del concepto de infinito actual.

7. Se destaca la incapacidad de los alumnos para responder el instrumento: incapacidad manifestada en el gran número de ítems sin respuestas, lo que evidencia dificultad en la comprensión de la noción de límite, aún después de la exposición del tema en el aula.

8. También se destaca la inconsistencia de las respuestas de los sujetos, puesta de manifiesto al resolver tareas referidas al mismo ejercicio presentado en distintos formatos.

