APROXIMACIÓN AL ORIGEN DE LA DISTRIBUCIÓN NORMAL, VÍA PROBABILIDAD

Sánchez Ibarbo, Liset Fernanda
liset.sanchez@correounivalle.edu.co
Universidad del Valle, sede Norte del Cauca (Colombia)

RESUMEN
Se realiza una propuesta con base en el artículo de Gabriel Conde que se denomina: distribución normal una rápida revisión histórica. Este se centra en los aspectos históricos que ocurrieron en la constitución de la Distribución Normal desde el año 1494 hasta 1855. Este trabajo se desarrolla por la vía Probabilidad y se realiza con el fin de comprender las dificultades y obstáculos que presentó la Distribución Normal al inicio de su constitución para brindar elementos históricos y epistemológicos, como el quincux de Galton, para evidenciar cómo facilitan la comprensión del concepto de Distribución Normal. Este artículo hace parte de los avances de trabajo de grado para optar el título de Licenciada en Educación Básica con Énfasis en Matemática.

PALABRAS CLAVE
Distribución Normal, Historia de la Probabilidad, Quincux, Campana Gauss.

INTRODUCCIÓN
La Distribución Normal (DN) es un concepto de la Probabilidad y Estadística, es una distribución muy importante, pues permite modelar adecuadamente fenómenos físicos, biológicos, sociológicos y psicológicos, como el efecto de un medicamento en cierta comunidad, medidas antropométricas, cuestionarios, etc. Su representación gráfica es conocida como la campana de Gauss, sin embargo se empezó a consolidar mucho antes de Friedrich Gauss. La DN tuvo dos vías por las que se desarrolló, la primera es la Teoría de los Errores que inició con los antiguos astrónomos y está relacionada con la física, y la segunda es por la Teoría de la Probabilidad, donde se convirtió en una herramienta que permite realizar cálculos probabilísticos.

Esto permite observar que la comprensión de esta distribución es importante no solo para los estudiantes de Licenciatura en Educación Básica con Énfasis en Matemáticas sino para psicólogos, médicos, biólogos, administradores, etc., que también tienen cursos de Estadística o Introducción a la estadística en sus carreras. Por esta razón es importante introducir la DN desde la Educación Básica, ya que este concepto se utiliza en diferentes contextos. Consideramos que si los estudiantes antes de ingresar a algún programa de pregrado ya se han relacionado con este concepto, tal vez adquieran una mejor comprensión del mismo.
El Ministerio de Educación Nacional (MEN) establece en los Lineamientos Curriculares de Matemáticas la importancia de la estadística: “Los dominios de la estadística han favorecido el tratamiento de la incertidumbre en ciencias como la biología, la medicina, la economía, la psicología, la antropología, la lingüística..., y aún más, han permitido desarrollos al interior de la misma matemática” (MEN, 1998, p. 47). Siendo la DN parte de esos dominios estadísticos, la introducción del concepto desde la Educación Básica, podría facilitar su comprensión en la Educación Superior, resaltando que para los futuros docentes de matemáticas, es muy importante comprender esta distribución, pues son ellos quienes van a enseñarla.

Por esta razón, se realiza un estudio histórico epistemológico sobre la constitución de la DN, para observar y entender los obstáculos y dificultades que tuvo este concepto en su desarrollo, brindando así elementos históricos para su comprensión. Como afirma Conde (2015):

Al comprender la historia de las ideas, sus derroteros, sus dificultades y sobre todo la manera y los contextos en que surgieron, la asimilación (aprendizaje) y la apropiación del conocimiento desde todo punto de vista, teórico y práctico, se verá enriquecida con elementos que en los actuales currículos de las carreras profesionales no aparecen (Conde, 2015, p. 59)

De esta manera surge una problemática relacionada con algunas de las dificultades históricas y epistemológicas que se encuentran inmersas en el desarrollo del concepto de DN para la cual surge la siguiente pregunta que será la directriz de este trabajo, ¿cómo fue el inicio de la distribución normal?, cuyo objetivo general es brindar elementos, a través de la historia, a la Educación Matemática que facilite la comprensión del concepto de DN.

MARCO DE REFERENCIA

Se toman referencias bibliográficas acerca de la constitución de la DN vía Probabilidad, iniciando con las que dan sentido a la prehistoria de este concepto hasta los aportes que hizo Laplace y por último se consideran los aspectos que tuvo Francis Galton para crear el Quincux, instrumento que le permitió modelar la aproximación de la binomial por la normal y que se puede utilizar como recurso educativo para la enseñanza de este concepto.

Los textos que retoman la prehistoria de la DN son:

- “La distribución normal una rápida revisión histórica” de Conde (2015), en donde se hace un recorrido de forma general vía Probabilidad y por la vía de la Teoría de Errores hasta llegar a la constitución de la DN. El recorrido vía Probabilidad se toma como guía para investigar los aportes que realizaron los personajes asociados al surgimiento de la distribución normal.
- “Cardano y Tartaglia, las matemáticas en el renacimiento italiano” de Francisco Martín Casalderrey (2000) y “Fermat, el mago de los números” de Blas Torrecillas Jover (1999), en los que se pretende analizar cómo solucionaron el problema de los
puntos Pacioli, Cardano y Tartaglia y analizar qué elementos de la DN estaban inmersos en las soluciones que brindaron estos.

- “Historia de un problema: el reparto de la apuestas” de J. García (2000), en el cual se presentan las distintas soluciones que le dieron al problema del reparto autores como Pacioli, Pascal, Tartaglia entre otros, además al final de este se expone una reflexión didáctica, sobre el aporte que hace el estudio de la génesis y evolución de conceptos matemáticos.
- “Análisis histórico epistemológico de la esperanza matemática” de Díaz (2012), tesis de maestría, en la que se analizan las soluciones que dieron distintos autores al problema de los puntos.

Los textos que aportan al estudio del surgimiento de la DN son:

- “Los Bernoulli” de Sánchez y Valdés (2001), que hace énfasis en Jacob Bernoulli, quién escribió el “Ars Conjectandi” publicado después de su muerte en 1713. Se analiza como aportó a la DN y qué consecuencia se dedujo ayudando a la DN.
- “The doctrine of chance” de Abraham de Moivre (1756), texto en el que Moivre tiene éxito en la búsqueda de una forma precisa y sencilla de aproximar la DN, se considera uno de los resultados más importantes de este libro, aparece titulado, “A Method approximating the Sum of the Terms of the Binomial \((a+b)^n\) expanded into a Series, from whence are deduced some practical Rules to estimate the Degree of Assent which is to be given to Experiments. p.243” del cual resultan una serie de reglas prácticas para estimar el grado de aceptación que ha de ser dado a los experimentos.

Los textos en los que se analiza el aporte de Francis Galton a la DN son:

- “Statistics on the table, the history of statistical Concepts and Methods” de Stigler (1999), se considera la segunda parte que se llama ideas Galtonianas.

En estos tres textos se pretende analizar una de las consecuencias de lo que se desarrolló en años anteriores a 1855 con respecto a la DN, la cual es el quincux de Galton, además, se pretende evidenciar cómo se puede utilizar este aparato para la enseñanza de esta distribución. Al finalizar esta investigación histórica y epistemológica, se pretende realizar una reflexión didáctica sobre cómo se puede introducir la DN desde la Educación Básica mediante el quincux, para esta parte se utilizan los siguientes textos:

La tesis doctoral “la construccion del significado de la distribución normal a partir de actividades de analisis de datos” de Liliana Tauber (2001).

En estos textos se analizará un poco cómo se puede enseñar el concepto de distribución desde la escuela y que no sea solo un concepto que se aborda en la Educacion Superior, aclarando que es una reflexion no una propuesta didáctica.

ASPECTOS METODOLÓGICOS
Este trabajo es un estudio histórico-epistemológico, acerca del origen de la DN, se realiza para ilustrar algunos aspectos que rodearon el surgimiento de este concepto. Actualmente hay una controversia sobre si la Estadística y Probabilidad hacen parte de las Matemáticas, lo que se puede evidenciar en los Lineamientos Curriculares que toman la probabilidad como rama de las matemáticas. El MEN (1998) afirma:

La probabilidad y la estadística son ramas de las matemáticas que desarrollan procedimientos para cuantificar, proponen leyes para controlar y elaboran modelos para explicar situaciones que por presentar múltiples variables y de efectos impredecibles son consideradas como regidas por el azar, y por tanto denominadas aleatorias (MEN, 1998, p. 17).

Tal vez esta sea una situación que se encuentra en crecimiento ya que en Colombia las investigaciones en Educación Estocástica se están incrementando, por esta razón el presente trabajo toma elementos de la Educación Matemática como la Historia y Epistemología de las Matemáticas que hace parte de las líneas de formación estipuladas en la estructura curricular de la Licenciatura en Educación Básica con Énfasis en Matemática, ofrecida en la Universidad del Valle, sede Norte del Cauca.

Un estudio histórico epistemológico:

Se realiza teniendo siempre en cuenta el contexto particular de producción teórica. Aunque los estudios se realizan fundamentalmente al interior de la teoría, ellos se elaboran bajo la consideración de que el discurso matemático es una actividad de razonamiento que se desarrolla en un medio sociocultural específico (Anacona, 2003, p. 32).

Es decir, en este trabajo además del contexto matemático, se tiene en cuenta el contexto social y cultural que rodeó el surgimiento de la DN.

Se conocen dos formas de abordar los estudios históricos epistemológicos: internalista y externalista, en la primera se escribe la historia del concepto, con base en su estructura lógica de producción y en la segunda, se tiene en cuenta el ámbito social ya que se cree que desde ahí se pueden obtener la historia del concepto. Este trabajo se realiza desde la internalista, ya que se elabora la historia del origen de la DN en un orden cronológico.

Para desarrollar este estudio histórico epistemológico inicialmente se realizó una búsqueda bibliográfica relacionada con el tema a investigar. Después se hizo una selección de los textos y autores que se consideraron podían aportar a este trabajo, estos fueron: Conde
(2015), Sánchez y Valdés (2001), Hald (1990, 1998), Moivre (1756) y Stigler (1999, 1998). Los textos de estos autores se utilizaron para la construcción de los cuatro capítulos que componen el trabajo, en el primero se plantea la problemática, objetivos y justificación; en el segundo, la constitución de la teoría de la Probabilidad como antecedente del concepto de DN; el tercero, permite evidenciar los pioneros en la constitución de este concepto; en el cuarto se presenta el aporte de Galton a la DN, el cual es el Quincux o máquina de Galton, que lo uso para representar esta distribución, además se expone una reflexión sobre la enseñanza de este concepto mediante esta máquina en la educación básica; por último las conclusiones y referencias bibliográficas.

DESARROLLO

Este trabajo es una visión histórica sobre el inicio de la DN, al finalizarlo se brinda un aporte general a la Educación Estocástica, sobre el uso del quincux para la introducción del concepto de DN desde la Educación Básica, con el objetivo de mostrar cómo un objeto que se realizó dos siglos atrás, puede servir como un recurso que ayude a la comprensión de un concepto.

El recorrido histórico inicia con la solución al problema de los puntos, que brindaron Pacioli, Tartaglia, Cardano, Pascal, Fermat y Huygens. Quienes dieron la primera solución correcta fueron Fermat y Pascal. Fermat lo hizo mediante combinaciones, y Pascal utilizó tres métodos para solucionarlo que se conocen como; el triángulo aritmético, el método recursivo y el método alternativo. El primero es el método que se menciona en este trabajo, pues en esta solución se evidencian algunas propiedades de la DN. Luego Huygens en su solución introdujo el concepto de esperanza matemática. Aparecen J. Bernoulli, A. de Moivre y Laplace con sus aportes al surgimiento de la DN. Bernoulli generaliza el problema de los puntos en su Ars Conjectandi, obteniendo el teorema de Bernoulli, que es retomado por Moivre quien lo trató de mejorar logrando así la aproximación de la DN por la normal, conocido como teorema de Moivre; posteriormente Laplace generaliza el teorema de Moivre y este se denominó teorema de Moivre-Laplace, además fue el primero en darle una representación gráfica a la DN.

Como una consecuencia de los aportes que hicieron los personajes anteriores, en los años 1870 y 1880 aparece F. Galton y el Quincux, una máquina que se utilizó para hacer mediciones respecto a un valor arbitrario, con lo que demostró que el conjunto de resultados obtenidos mediante el quincux se dispersaban y se concentraban siguiendo una línea curva como la de la distribución normal, la Figura 1, es una imagen del quincux original, que aparentemente fue hecho por Galton en 1873.

El quincux está compuesto por un tablero vertical que en la parte superior tiene una especie de embudo, debajo de este tiene varias filas de clavos, en la parte inferior tiene una serie de ranuras rectangulares, se lanzan bolas desde la parte superior, se utilizan bolas con diámetro menor a la distancia que hay entre los clavos para que al momento de ser lanzadas no se detengan, a medida que en que se lanzan una gran cantidad de bolas caen en las ranuras de
la parte inferior, formando una superficie con forma de campana. Como aparece en la Figura 2.

Figura 1. Imagen del quincux original, creado aparentemente por Galton en el año 1873. Fuente: Stigler, 1998

Figura 2. Boceto original de la máquina de Galton. Fuente: Stigler, 1999

El aporte de Galton se utiliza para realizar una reflexión didáctica, sobre la enseñanza de la DN en la Educación Básica, considerándolo un recurso didáctico que facilite la comprensión de este concepto. Aunque en el MEN (2006) no aparece estipulado la enseñanza de la DN en la educación básica, no es razón suficiente para no introducirlo, ya que el mismo Piaget utiliza un dispositivo parecido al quincux, para la enseñanza del concepto de distribución en niños. Piaget usa 5 aparatos (Figura 3), de los cuales cuatro tienen la abertura superior en la parte central y uno la tiene en el extremo superior derecho. Los aparatos se diferencian por el número de ranuras que tienen en la parte inferior (2 ranuras en los dispositivos I y V, 3 en el II, 4 en el III y un gran número en el aparato IV). Se trata de introducir en cada una de ellos una bola, después una segunda y tercera, preguntando al niño donde cree que va a caer y por qué. Una vez comprendida la experiencia se pide al niño que explique la forma que tomaría la distribución cuando se deje caer un gran número de bolas. Finalmente se dejan caer las bolas y se pide al niño que interprete la distribución obtenida (Tauber, 2001).

CONCLUSIONES

A continuación se presentan algunas de las conclusiones de este trabajo:

- Aunque de Moivre es quien obtiene la aproximación de la DN por la binomial, se puede considerar que el aporte que realizó J. Bernoulli fue muy importante para llegar ahí, pues tratando de mejorar el teorema de Bernoulli es que Moivre obtiene su teorema, luego aparece Laplace quien es el primero en darle una representación gráfica a la distribución normal y se le atribuye la generalización del teorema de Moivre. Se le conoció como teorema de Moivre-Laplace, esto ocurrió entre los siglos XVII y XIX.

- El quincux, es una máquina que Galton ideó y le permitió modelar la DN. La máquina de Galton se puede llevar a la educación básica, como un recurso para la enseñanza de la distribución normal, existen aplets del quincux en geogebratube, que permiten modelar esta distribución y evidenciar los parámetros utilizados, incluso el mismo Piaget utiliza un dispositivo parecido al quincux para la formación de la idea de distribución en niños.

- Todo esto permite observar como el conocimiento de la historia aporta a la enseñanza de conceptos matemáticos o probabilísticos, debido a que la máquina de Galton fue creada en el siglo XIX y si se conoce cómo funciona y cómo se puede adaptar para un grupo de estudiantes, se puede facilitar la enseñanza al docente y la comprensión por parte de los estudiantes de un concepto que aparentemente es complejo.

REFERENCIAS

