Anticipación de estrategias de resolución de problemas de división-medida con fracciones mediante una progresión de aprendizaje
Tipo de documento
Autores
Lista de autores
Montero, Eloísa, Callejo, María y Valls, Julia
Resumen
El objetivo de esta investigación es caracterizar cómo los estudiantes para maestro, un año después de un experimento de enseñanza, reconocen diferentes etapas de progresión al anticipar estrategias de estudiantes de educación primaria al resolver problemas de división - medida con fracciones. Los 41 participantes cursaban el séptimo semestre del Grado en Maestro en Educación Primaria durante el curso 2018-2019. En el análisis se tuvo en cuenta el tipo de estrategias utilizadas y si estas evidenciaban la idea de progresión. Los resultados muestran tres categorías en el uso de la idea de progresión al anticipar respuestas a problemas de división-medida: (a) No usan la idea de progresión; (b) usan parcialmente la idea de progresión; (c) usan la idea de progresión. Pese a su dificultad, es posible comenzar a desarrollar la idea de progresión al anticipar estrategias en la formación de futuros maestros.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
División | Fracciones | Inicial | Resolución de problemas | Tipos de metodología
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
25
Número
3
Rango páginas (artículo)
289-310
ISSN
16652436
Referencias
Ball, D. L. (1990). Prospective elementary and secondary teachers’ understanding of division. Journal for Research in Mathematics Education, 21(2), 132–144. https://doi.org/10.5951/jresematheduc.21.2.0132Ball, D. L., T hames, M. H. y Phelps, G. (2008). Content K nowledge for Teachi ng: what makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554Bandura, A. (1977). Self-efficacy: Toward a Unifying Theory of Behavioral Change. Psycological Review, 84(2), 191. https://doi.org/10.1037/0033-295x.84.2.191Clements, D. H. y Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89. https://doi.org/10.1207/s15327833mtl0602_1Depaepe, F., Torbeyns, J., Vermeersch, N., Janssens, D., Janssen, R., Kelchtermans, G., Verschaffel, L. y Van Dooren, W. (2015). Teachers’ content and pedagogical content knowledge on rational numbers: A comparison of prospective elementary and lower secondary teachers. Teaching and Teacher Education, 47, 82-92. https://doi.org/10.1016/j.tate.2014.12.009Duncan, R. G. y Hmelo-Silver, C. E. (2009). Lear ning progressions: Aligning curriculum, instr uction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609. https://doi.org/10.1002/tea.20316 e. montero, m. l. callejo, j. Valls308Relime25 (3), Noviembre 2022Duschl, R., Maeng, S. y Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in ScienceEducation, 47(2), 123182. https://doi.org/10.1080/03057267.2011.604476Edgington, C. (2014). Teachers’ uses of a learning trajectory as a tool for mathematics lesson planning. En J. J. Lo, K. Leatham y L. Van Zoest (Eds.), Research trends in mathematics teacher education (pp. 261-284). Springer. https://doi.org/10.1007/978-3-319-02562-9_14Edgington, C., Wilson, P. H., Sztajn, P. y Webb, J. (2016). Translating learning trajectories into useable tools for teachers. Mathematics Teacher Educator, 5(1), 65-80. https://doi.org/10.5951/mathteaceduc.5.1.0065Empson, S. B. (2011). On the idea of learning trajectories: Promises and pitfalls. The Mathematics Enthusiast, 8(3), 571-598. https://doi.org/10.54870/1551-3440.1229Empson, S. B. y Levi, L. (2011). Extending Children’s Mathematics: Fractions and Decimals. Heinemann.Entwistle, N. (2000). Promoting deep learning through teaching and assessment. En 1st Annual Conference ESRC Teaching and Learning Research Programme (pp. 9-20). University of Leicester. http://www.etl.tla.ed.ac.uk/docs/entwistle2000.pdfFernández, C., Llinares, S. y Valls, J. (2012). Learning to notice students’ mathematical thinking through on-line discussions. ZDM, 44(6), 747-759. https://doi.org/10.1007/s11858-012-0425-yFernández, C., Sánchez-Matamoros, G., Moreno, M. y Callejo, M. L. (2018). La coordinación de las aproximaciones en la comprensión del concepto de límite cuando los estudiantes para profesor anticipan respuestas de estudiantes. Enseñanza de las ciencias, 36(1), 143-162. https://doi.org/10.5565/rev/ensciencias.2291Fischbein, E., Deri, M., Nello, M. S. y Marino, M. S. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for research in mathematics education, 16(1), 3-17. https://doi.org/10.2307/748969Gordon, C. y Debus, R. (2002). Developing deep learning approaches and personal teaching eff icacy within a preser vice teacher education context. British Journal of Educational Psychology, 72(4), 483-511. https://doi.org/10.1348/00070990260377488Gotwals, A. W. (2018). Where are we now? Learning progressions and formative assessment. AppliedMeasurement in Education,31(2), 157-164. https://doi.org/10.1080/08957347.2017.1408626Graeber, A., Tirosh, D. y Glover, R. (1986). Preservice teachers’ beliefs and performance on measurement and partitive division problems. En G. Lappan y R. Even (Eds.), Proceedings of the Eighth Annual Meeting of the North American Chapter of the International Group for the Psychologyof Mathematics Education (pp. 262-267). Michigan State University, East Lansing y MI.Herbst, P., Chazan, D., Chen, C. L., Chieu, V. M. y Weiss, M. (2011). Using comics-based representations of teaching, and technology, to bring practice to teacher education courses. ZDM, 43(1), 91-103. https://doi.org/10.1007/s11858-010-0290-5Higgs, J. (2012). Practice-Based Education Pedagog y. Sit uated capabilit y-development, relationship practice(s). En J. Higgs, R. Barnett, S. Billett, M. Hutchings y F. Trede (Eds.), Practice-Based Education. Perspective and Strategies (pp. 71-80). Sense Publishers. https://doi.org/10.1007/978-94-6209-128-3_6Ivars, P., Fernández, C. y Llinares, S. (2020). A learning Trajectory as a scaffold for pre-service Teachers’ Noticing of Students’ Mathematical Understanding. International Journal of Science and mathematics Education, 18(3), 529-548. https://doi.org/10.1007/s10763-019-09973-4Jacobs, V., Lamb, L. y Philipp, R. (2010). Professional Noticing of Children’s Mathematical Thinking. Journal for Research in Mathematics Education,41(2), 169-202. https://www.jstor.org/stable/20720130 anticipacióndeestrategiasderesolucióndeproblemas309Relime25 (3), Noviembre 2022Jansen, A. y Hohensee, Ch. (2016). Examining and elaborating upon the nature of elementary prospective teachers’ conceptions of partitive division with fractions. Journal of MathematicsTeacher Education, 19, 503-522. https://doi.org/10.1007/s10857-015-9312-0Li, Y. y Kulm, G. (2008). Knowledge and confidence of pre-service mathematics teachers: The case of fraction division. ZDM, 40(5), 833-843. https://doi.org/10.1007/s11858-008-0148-2Llinares, S. (2013). El desar rollo de la competencia docente “mirar profesionalmente” la enseñanza-aprendizaje de las matemáticas. Educar em Revista, 50, 117-133. https://doi.org/10.1590/S0104-40602013000400009Llinares, S., Fernández, C. y Sánchez-Matamoros, G. (2016). Changes in how prospective teachers anticipate secondary students’ answers. Eurasia Journal of Mathematics, Science & Technology Education, 12(8), 2155-2170. https://doi.org/10.12973/eurasia.2016.1295aLo, J. y Luo, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15, 481-500. https://doi.org/10.1007/s10857-012-9221-4Mason, J. (2002). Researching your own practice: the discipline of noticing. Routledge. https://doi.org/10.4324/9780203471876Montero, E. y Callejo, M. L. (2019). Cambios en cómo estudiantes para maestro anticipan respuestas de niños de primaria. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 433-442). Valladolid: SEIEM. https://doi.org/10.26754/actas.seim21Nillas, L. (2003). Division of fractions: Preservice teachers’ understanding and use of problem solving strategies. The mathematics educator 7(2), 96-113.Olanoff, D., Lo, J. y Tobias, J. (2014). Mathematical Content Knowledge for Teaching Elementary Mat hemat ics: A Focu s on Fr a ct ion s. T h e M a th e m a t ic s Enth u sia st, 11(2), 267-310. https://doi.org/10.54870/1551-3440.1304Sánchez-Matamoros, G., Moreno, M., Perez-Tyteca, P. y Callejo, M.L. (2018). Trayectoria de aprendizaje de la longitud y su medida como instr umento conceptual usado por futuros maestros de educación infantil. RELIME. Revista Latinoamericana de Investigación en Matemática Educativa, 21(2), 203-228. https://doi.org/10.12802/relime.18.2124Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for research in mathematics education, 26(2) 114-145. https://doi.org/10.5951/jresematheduc.26.2.0114Smith, M. S. y Stein, M.K. (2011). 5 practices for orchestrating productive mathematics discussions. National Council of Teachers of Mathematics.Stahnke, R., Schueler, S. y Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: A systematic review of empirical mathematics education research. ZDM Mathematics Education, 48, 1-27. https://doi.org/10.1007/s11858-016-0775-ySteffe, L. P. y Olive, J. (2010). Children’s fractional knowledge. Springer.Stein, M. K., Engle, R. A., Smith, M. S. y Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313-340. https://doi.org/10.1080/10986060802229675Stevens, A., Wil k ins, J., Lovin, L., Siegf r ied, J., Nor ton, A. y Busi, R. (2020). Promoting sophisticated fraction constructs through instructional changes in a mathematics course for PreK-8 prospective teachers. Journal of Mathematics Teacher Education, 23, 153-181. https://doi.org/10.1007/s10857-018-9415-5Stockero, S. L. (2014). Transitions in prospective mathematics teacher noticing. En J. J. Lo, K. Leatham y L. Van Zoest (Eds.), Research Trends in Mathematics Teacher Education(pp. 239-259). Springer. https://doi.org/10.1007/978-3-319-02562-9_13 e. montero, m. l. callejo, j. Valls310Relime25 (3), Noviembre 2022Teuscher, D., Leatham, K. R. y Peterson, B. E. (2017). From a framework to a lens: Learning to notice student mathematical thinking. En E. Schack, M. Fisher y J. Wilhelm (Eds), Teacher noticing: Bridging and Broadening Perspectives, Contexts, and Frameworks (pp. 31-48). Springer. https://doi.org/10.1007/978-3-319-46753-5_3Tirosh, D. y Graeber, A. O. (1989). Preser vice elementar y teachers’ explicit beliefs about multiplication and division. Educational Studies in Mathematics, 20(1), 79-96. https://doi.org/10.1007/bf00356042Tyminski, A. M., Simpson, A. J., Land, T. J., Drake, C. y Dede, E. (2021). Prospective elementary mathematics teachers ‘noticing of childrens’ mathematics: a focus on extending moves. Journal of Mathematics Teacher Education, 24, 533–561. https://doi.org/10.1007/s10857-020-09472-2Vula, E. y Kingji-Kastrati, J. (2018). Pre-service teacher procedural and conceptual knowledge of fractions. En G. J. Stylianides y K. Hino (Eds.), Research advances in the mathematical education of pre-service elementary teachers (pp. 111-123). Springer. https://doi.org/10.1007/978-3-319-68342-3Wilson, P. H., Mojica, G. F. y Confrey, J. (2013). Learning trajectories in teacher education: supporting teachers’ understanding of students’ mathematical thinking. Journal of Mathematical Behavior, 32(2), 103-121. https://doi.org/10.1016/j.jmathb.2012.12.003Wilson, P. H., Sztajn, P., Edgington, C. y Confrey, J. (2014). Teachers’ use of their mathematical knowledge for teaching in learning a mathematics learning trajectory. Journal of MathematicsTeacher Education, 17, 149-175. https://doi.org/10.1007/s10857-013-9256-1Wilson, P. H., Sztajn, P., Edgington, C. y Myers, M. (2015). Teachers’ uses of a learning trajectory in student-centered instructional practices. Journal of Teacher Education, 66(3), 227-244. https://doi.org/10.1177/0022487115574104Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329. https://psycnet.apa.org/doi/10.1037/0022-0663.81.3.329Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic regulation: An analysis of exemplary instructional models. En D. Schunk y B. Zimmerman (Eds.), Self regulated learning: From teaching to self-reflective practice (pp. 1–19). Guilford Publications.
Proyectos
Cantidad de páginas
22