As abordagens do uso do GeoGebra por professores secundários ingleses e taiwaneses
Tipo de documento
Autores
Lista de autores
Lu, Yu-Wen Allison
Resumen
The idea of the integration of dynamic geometry and computer algebra and the implementation of open-source software in mathematics teaching underpins new approaches to studying teachers’ thinking and technological artefacts in use. This study opens by reviewing the evolving design of dynamic geometry and computer algebra; teachers’ conceptions and pioneering uses of GeoGebra; and early sketches of GeoGebra mainstream use in teaching practices. This research has investigated English and Taiwanese upper-secondary teachers’ attitudes and practices regarding GeoGebra. More specifically, it has sought to gain an understanding of the teachers’ conceptions of technology and how their pedagogies incorporate dynamic manipulation with GeoGebra into mathematical discourse.
Fecha
2008
Tipo de fecha
Estado publicación
Términos clave
Actitud | Desarrollo del profesor | Otro (álgebra) | Otro (geometría) | Software
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Volumen
10
Número
2
Rango páginas (artículo)
38-56
ISSN
21787727
Referencias
ANDREWS, P. Negotiating meaning in cross-national studies of mathematics teaching: kissing frogs to find princes, Comparative Education, 43(4), 489-509, 2007. ATIYAH, M. Mathematics in the 20th Century: geometry versus algebra, Mathematics Today, 37(2), 46-53, 2001. BROADFOOT, P. Comparative education for the 21st century: retrospect and prospect, Comparative Education, 36 (3), p.357-372, 2000. DUBINSKY, E.; HAREL, G. The nature of the process conception of function. In: HAREL, G.; DUBINSKY, E., The concept of function aspects of epistemology and pedagogy. (Washington, D.C.: Mathematical Association of America), p.85–106, 1992. EDWARDS, J. A.; JONES, K. Linking geometry and algebra with GeoGebra, Mathematics Teaching, incorporating MicroMath, 194, p.28-30, 2006. HOHENWARTER, M.; FUCHS, K. Combination of Dynamic Geometry, Algebra and Calculus in the Software System GeoGebra, in Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference. P´ecs, Hungary, 2004. HOHENWARTER, M.; JONES, K. BSRLM Geometry Working Group: Ways of linking geometry and algebra: the case of GeoGebra. In: KÜCHEMANN, D. (Ed.). Proceedings of the British Society for Research into Learning Mathematics, 27 (3), p.126-131, 2007. HOHENWARTER, M.; LAVICzA, z. Mathematics Teacher Development with ICT: Towards an International GeoGebra Institute. In: KÜCHEMANN, D. (Ed.). Proceedings of the British Society for Research into Learning Mathematics, 27 (3), p.49-54, 2007. HOHENWARTER, M.; PREINER, J. Design Guidelines for Dynamic Mathematics Worksheets, the Proceedings of the CADGME Conference, 2007. JONES, K. Providing a Foundation for Deductive Reasoning: Students’ Interpretations when Using Dynamic Geometry Software and Their Evolving Mathematical Explanations, Educational Studies in Mathematics, 44 (1-3), p.55–85, 2000. LABORDE, C. Integration of technology in the design of geometry tasks with Cabrigéomètre, International Journal of Computers for Mathematical Learning, 6, p.283317, 2001. NOSS, R.; HOYLES, C. Windows on mathematics meanings: learning cultures and computers, Kluwer Academic Publishers, Netherland, 1996. PAPERT, S. An Exploration in the Space of Mathematics Education, International Journal of Computers for Mathematical Learning, 1(1), p.95-123, 1996. RUTHVEN, K. Expanding Current Practice in Using Dynamic Geometry to Teach about Angle Properties, Micromath, 21(2), p.26-30, 2005. RUTHVEN, K. The interpretative flexibility, instrumental evolution and institutional adoption of mathematical software in educational practice: the examples of computer algebra and dynamic geometry, the Annual Meeting of the American Educational Research Association, March 2008, New York. SANGWIN, C. A brief review of GeoGebra: dynamic mathematics, MSOR Connections, 7(2), p.36-38, 2007. SCHMIDT, W. H. et al. Characterizing pedagogical flow: an investigation of mathematics and science teaching in six countries, 1996. SCHUMANN, H.; GREEN, D. New protocols for solving geometric calculation problems incorporating dynamic geometry and computer algebra software International Journal of Mathematical Education in Science and Technology, 31(3), p.319–339, 2000. SUzUKI, J. The Open Source Revolution. In: Focus. 26(6), 2006.