As contribuições da engenharia didática enquanto campo metodológico para o ensino de geometria esférica
Tipo de documento
Autores
Lista de autores
Pivatto, Wanderley y Schuhmacher, Elcio
Resumen
Este artigo propõe a utilização de uma sequência didática construída a partir das etapas da Engenharia Didática, com situações que aforam problemas reais incentivando à pesquisa e atividades relacionadas à Geometria Esférica, contribuindo para a formação e compreensão de conceitos geométricos por parte dos estudantes. O estudo está embasado na didática da matemática que prioriza resultados de experiências em sala de aula. A metodologia segue os princípios da Engenharia Didática, que valoriza tanto o aspecto teórico como experimental, a fim de analisar as situações didáticas ocorridas em sala de aula. Espera-se com este trabalho, que os resultados obtidos revelem uma facilitação na compreensão de conceitos de Geometria Esférica, permitindo o desenvolvimento de competências para sua utilização nos problemas do cotidiano.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Contextos o situaciones | Didáctica francesa | Geometría
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
3
Número
1
Rango páginas (artículo)
83-101
ISSN
22382380
Referencias
ALMOULOUD, S. A. A geometria no ensino fundamental: reflexões sobre uma experiência de formação envolvendo professores e alunos. Revista Brasileira de Educação, São Paulo, n. 27, p. 94 - 108, Set /Out /Nov /Dez 2004. ARTIGUE, M. Engenharia Didática. In: BRUN, J. Didática das Matemáticas. Tradução de: Maria José Figueiredo. Lisboa: Instituto Piaget, 1996. Cap. 4. p. 193-217. BARRETO, M.S. Do mito da Geometria Euclidiana ao ensino das Geometrias Não Euclidianas. Vértices. Rio de Janeiro, v. 9, n.1/3, 74-81, jan. 2007. BRASIL. Secretaria de Educação Fundamental. Parâmetros curriculares nacionais: matemática. Brasília: MEC/SEF, 1998. BROLEZZI, A. C. A Tensão entre o Discreto e Contínuo na História da Matemática e no Ensino da Matemática. 1996. Tese (Doutorado em Educação), Universidade de São Paulo, São Paulo. BROUSSEAU, G. A Teoria das Situações Didáticas e a Formação do Professor. Palestra. São Paulo: PUC, 1996. CABARITI, E. A geometria hiperbólica na formação docente: possibilidades de uma proposta com o auxílio do cabri-géomètre. III Seminário Internacional de Pesquisa em Educação Matemática, 2006, São Paulo. COURANT, R.; ROBBINS, H. O que é matemática? Uma abordagem elementar de métodos e conceitos. Rio de Janeiro: Ciência Moderna, 2000. DAVIS, C.; NUNES, M. M. R.; NUNES, C. A.A. Metacognição e Sucesso Escolar: Articulando Teoria e Prática. Cadernos de Pesquisa, v. 35, n. 125, maio/ago. 2005. Disponível em: . Acesso em: 10 out. 2013. D’AMBROSIO, U. Educação matemática: Da teoria à prática. 14ª. ed. São Paulo: Papirus, 2009. DOUADY, R. Didactique des Mathématiques. Enciclopédia Universalis, 1985, p.885-889. FIORENTINI, Dário; NACARATO, Adair M. Cultura, formação e desenvolvimento profissional de professores que ensinam matemática: investigando e teorizando a partir da prática. São Paulo: Musa, Campinas: GEPFPM-PRAPEM-FE/UNICAMP, 2005. LEIVAS, J.C.P. Educação geométrica: reflexões sobre ensino e aprendizagem em geometria. Revista SBEM-RS, Porto Alegre, no. 13, v.1, p. 9-16, 2012. MACHADO, S. D. A. Engenharia Didática. In: MACHADO, S. D. A. (org.). Educação Matemática: Uma introdução. 2 ed. São Paulo: Educ., 2002. p. 197-208. MLODINOW, L. A janela de Euclides: a história da geometria, das linhas paralelas ao hiperespaço. São Paulo: Geração, 2010.