Educação matemática no contexto de alguns debates clássicos em Filosofia e Matemática
Tipo de documento
Autores
Lista de autores
Otte, Michael y Radu, Mircea
Resumen
Matemática e Educação Matemática desde o século XVI.O problema subjacente poderia ser chamado Problema Aristotélico. Aristóteles argumentou que qualquer coisa individual consiste em uma forma substancial, que determina sua natureza geral, e matéria, que individua a coisa e a torna numericamente distinta de qualquer outra substância semelhante.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Evolución histórica de conceptos | Historia de la Educación Matemática | Otra (disciplinas) | Patrones numéricos
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Referencias
Bernays, P., 1976. Abhandlungen zur Philosophie der Mathematik, WBG Darmstadt. Bolzano, B. 1981, Wissenschaftslehre (WL), 4 vols., Sulzbach: Wolfgang Schultz. Reprint Scientia Verlag Aalen. Condillac, E.B. (2001). Essay on the origin of human knowledge. Transl. and ed. by H. Aarsleff , Cambridge University Press, Cambridge/UK. Dummett, M., 1991, Frege, Harvard University Press, Cambridge, MA. Effros, E. G. 1998, Mathematics as Language, in: H. G. Dales/G. Oliveri (eds.), Truth in Mathematics, Oxford. Ermer, E., / K. Kiehl, in: The Economist, 11.11. 2010; also: J. Barkow, L. Cosmides & J. Tooby, (eds.), The Adapted Mind, Oxford 1992. Euler, L., Vollständige Anleitung zur Algebra, Leipzig: Reclam, 1770. Ferreirós, J., 1999, Labyrinth of Thought. Birkhäuser Verlag, Basel, Boston. Field, Hartry, 1980, Science Without Numbers: A Defence of Nominalism, Princeton, N.J.: Princeton University Press. Foucault, M., 1973, The Order of Things, Vintage Books, N.Y. Fowler D., 1987, The Mathematics of Plato´s Academy, Oxford, Clarendon Press. Frege, G., 1884, Grundlagen der Arithmetik, Breslau. Grosholz, E., 1980, Descartes’ Unification of Algebra and Geometry, in. S. Gaukroger (ed.) Descartes. Heijenoort, J. v. (1967), Logic as calculus and logic as language, Synthese 17, 324-330. Henry, M., 1987, La Barbarie, Grasset Paris. Hintikka, J., 1997, Lingua Universalis vs. Calculus Ratiocinator, Selected Papers, vol. 2, Kluwer, Dordrecht Kahneman, Daniel, 2010, Thinking, Fast and Slow. Penguin UK. Kant, I., (1992), The Critique of Pure Reason, N. Kemp Smith (Trans.), The Macmillan Press Ltd., London. (citation after the 1.(A) and 2.(B) edition). Lakoff, G./M. Johnson, 1980. Metaphors We Live By, Chicago UP. Lenhard, J./M. Otte, 2010. Two Types of Mathematization. In Bart Van Kerkhove, Jonas De Vuyst and Jean Paul Van Bendegem, Philosophical perspectives on mathematical practice. (pp. 301-330). London: College Publications. Leibniz G., 1684, A New Method for Maxima and Minima, as Well Tangents, Which is not Obstructed by Fractional or Irrational Quantities. Leibniz G., 1686. Discourse on metaphysics Lenoir, T., 1979. Descartes and the Geometrization of Thought, Historia Mathematica. Vol.6, pp355-379. Lovejoy, 1964/1936, The Great Chain of Being, Harvard Univ. Press. Otte, M., 1989, The Ideas of Hermann Grassmann in the Context of the Mathematical and Philosophical Tradition since Leibniz, Historia Mathematica, 16, l-35, Otte, M. 2003, Complementarity, Sets and Numbers, Edu. Studies in Math. 53, 203-228. Otte, M. 2006, Proof-Analysis and Continuity, Foundations of Science, 11: 121-155. Peirce, Ch. S.: CCL = The Cambridge Conferences Lectures of 1898, in: Ch. S. Peirce, Reasoning and the Logic of Things, ed. by K.L. Ketner, with an Introduction by K.L. Ketner and H. Putnam, Harvard UP, Cambridge/London 1992; CP = Collected Papers of Charles Sanders Peirce, Volumes I-VI, ed. by Charles Hartshorne and Paul Weiß, Cambridge, Mass. (Harvard UP) 1931-1935, Volumes VII-VIII, ed. by Arthur W. Burks, Cambridge, Mass. (Harvard UP) 1958 (quoted by no. of volume and paragraph)7 Radu, M. Basic skills versus conceptual understanding in mathematics education: The case of fraction division. Zentralblatt für Didaktik der Mathematik 34, 93–95 (2002). https://doi.org/10.1007/BF02655712 Rawls J. 2003, Future Pasts: The Analytic Tradition in Twentieth-Century Philosophy, ed. J. Floyd/S. Shieh, Oxford) Richards, J., 1988, Mathematical Visions, Academic Press, Boston. Rossi, P., 2000, Logic and the Art of Memory, The University of Chicago Press. Rubenstein, R.,E., 2003, Aristotle’s Children, Harcourt Inc. N.Y. Shea, W. R., 1991. The Magic of Numbers and Motion, Watson Publishing. Stewart, M., 2006, The Courtier and the Heretic, Norton & Company N.Y Tharp, L., 1989, »Myth and Mathematics«, in: Synthese, 81, pp. 167–201. Thom, R., 1971, »Modern Mathematics: An Educational and Philosophic Error?«, in: American Scientist, Vol. 59, pp. 695–699. Thom, R., 1972, »Modern Mathematics: Does it Exist?«, in: G. Howson (ed.), Developments in Mathematical Education, Cambridge, pp. 206 f.). Thom, R., 1992, Leaving Mathematics for Philosophy, in: Casacuberta/Castallet (eds), Mathematical Research Today and Tomorrow, Springer Verlag, Heidelberg, pp 1-12. Thurston, W., 1994, On proof and progress in mathematics. Bulletin of the AMS, vol. 30, 161-177. Wertheimer, M., 1945, Productive Thinking, New York. Wu, Hung-Hsi, 1999: Basic Skills Versus Conceptual Understanding – A Bogus Dichotomy. In: American Educator, Fall 1999.
Proyectos
Cantidad de páginas
22