El proceso de generalización y la generalización en acto: un estudio de casos
Tipo de documento
Autores
Lista de autores
Ayala-Altamirano, Cristina y Molina, Marta
Resumen
A partir de un análisis microgenético del proceso de generalización de tres estudiantes de cuarto de primaria, se describe cómo construyen, dan sentido y expresan una relación funcional en un contexto de resolución de problemas. Los resultados contribuyen a la comprensión y reflexión sobre la integración del enfoque funcional en las aulas de primaria. Se distinguen diferentes grados de sofisticación en el proceso de generalización según los medios semióticos empleados. Uno de los estudiantes expresa de forma explícita la generalización mientras que en los otros dos casos queda implícita en las acciones de los estudiantes sugiriendo una incipiente conciencia sobre lo indeterminado o presencia de la analiticidad.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Capacidades | Funciones | Generalización | Otro (tipos estudio) | Semiótica
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Ayala-Altamirano, C. y Molina, M. (2020). Meanings Attributed to Letters in Functional Contexts by Primary School Students. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-019-10012-5 Bermejo, V. (2005). Microgénesis y cambio cognitivo: adquisición del cardinal numérico. Psicothema, 17(4), 559-562. Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming practice. Heinemann. Blanton, M. L. (2017). Algebraic reasoning in grades 3-5. En M. T. Battista (Ed.), Reasoning and sense making in the mathematics classroom. Grades 3-5 (pp. 67-102). NCTM. Blanton, M. L. y Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. En J. Cai y E. Knuth (Eds.), Early algebraization. Advances in mathematics education (pp. 5-23). Springer. Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K. y Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202. https://doi.org/10.1007/s10649-016-9745-0 Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K. y Newman-Owens, A. (2015). A Learning Trajectory in 6-Year-Olds’ Thinking About Generalizing Functional Relationships. Journal for Research in Mathematics Education, 46(5), 511-558. https://doi.org/10.5951/jresematheduc.46.5.0511 Cañadas, M. C. y Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 69–81. Cañadas, M. C. y Fuentes, S. (2015). Pensamiento funcional de estudiantes de primero de educación primaria: Un estudio exploratorio. En C. Fernández, M. Molina y N. Planas (Eds.), Investigación en Educación Matemática XIX (pp. 211–220). SEIEM. Cañadas, M. C. y Molina, M. (2016). Una aproximación al marco conceptual y principales antecedentes del pensamiento funcional en las primeras edades. En E. Castro, E. Castro, J. L. Lupiáñez, J. F. Ruiz-Hidalgo y M. Torralbo (Eds.), Investigación en Educación Matemática. Homenaje a Luis Rico (pp. 209–218). Comares Dörfler, W. (1991). Forms and means of generalization in mathematics. En A. Bishop, S. Mellin-Olsen y J. V. Dormolen (Eds), Mathematical knowledge: Its growth through teaching (pp. 61–85). Springer. Dörfler, W. (2008). En route from patterns to algebra: Comments and reflections. ZDM, 40(1), 143–160. https://doi.org/10.1007/s11858-007-0071-y Ellis, A. B. (2007). A Taxonomy for Categorizing Generalizations: Generalizing Actions and Reflection Generalizations. Journal of the Learning Sciences, 16(2), 221–262. https://doi.org/10.1080/10508400701193705 Flick, U. (2012). Qualltative Sozialforschung [Introducción a la investigación cualitativa]. Ediciones Morata. Ginsburg, H. (1997). Entering the child’s mind: The clinical interview in psychological research and practice. Cambridge University Press. Hidalgo-Moncada, D. y Cañadas, M.C. (2020). Intervenciones en el trabajo con una tarea de generalización que involucra las formas directa e inversa de una función en sexto de primaria. PNA, 14(3), 204-225. https://doi.org/10.30827/pna.v14i3.11378 Kaput, J. J. (1999). Teaching and learning a new algebra. En E. Fenema y T. A. Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133-155). LEA Kaput, J.J. (2009). Building intellectual infrastructure to expose and understand ever-increasing complexity. Educational Studies in Mathematics, 70(2), 211–215. https://doi.org/10.1007/s10649-008-9169-6 Mason, J. H., Grahamn, A., Pimm, D. y Gowar, N. (1985). Routes to/Roots of algebra. The Open University Press, Milton Keynes. Mason, J. (1996). Expressing generality and roots of algebra. En N. Bernarz, C. Kieran y L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65-86). Springer. Mason, J. (2017). Overcoming the algebra barrier: Being particular about the general, and generally looking beyond the particular, in homage to Mary Boole. En S. Stewart (Ed.), And the rest is just algebra (pp. 97–117). Springer. https://doi.org/10.1007/978-3-319-45053-7_6 Molina, M., Ambrose, R. y del Río, A. (2018). First encounter with variables by first and third grade Spanish students. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5-to-12-year-olds, ICME-13 (pp. 261-280). Springer. https://doi.org/10.1007/978-3-319-68351-5_11 Morales, R., Cañadas, M., Brizuela, B. y Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de Educación Primaria en un contexto funcional. Enseñanza de las Ciencias, 36(3), 59-78. https://doi.org/10.5565/rev/ensciencias.2472 Pinto, E. y Cañadas, M. C. (2018). Generalización y razonamiento inductivo en una estudiante de cuarto de primaria. Un estudio de caso desde el pensamiento funcional. En L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, Á. Aguilar-González, P. Alonso, F. J. García y A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 457–466). SEIEM. Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(2), 111–126. https://doi.org/10.1007/s10649-008-9127-3 Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62. Radford, L. (2013). En torno a tres problemas de la generalización. En L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina y I. Segovia (Eds.), Investigación en Didáctica de la Matemática. Homenaje a Encarnación Castro (pp. 3–12). Comares. Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. En C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-Year-Olds. ICME-13 (pp. 3–25). Springer. https://doi.org/10.1007/978-3-319-68351-5_1 Radford, L., Edwards, L. y Arzarello, F. (2009). Introduction: Beyond words. Educational Studies in Mathematics 70(2), 91–95. https://doi.org/10.1007/s10649-008-9172-y Radford, L. y Sabena, C. (2015). The Question of Method in a Vygotskian Semiotic Approach. En A. Bikner-Ahsbahs, C. Knipping, y N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education: Examples of Methodology and Methods (pp. 157-182). Springer. https://doi.org/10.1007/978-94-017-9181-6_7. Ramírez, R., Brizuela, B.M. y Ayala-Altamirano, C. (2020). Word problems associated with the use of functional strategies among grade 4 students. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-020-00346-7 Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. En J. J. Kaput, M. L. Blanton y D. W. Carraher (Eds.), Algebra in the Early Grades (pp.133–163). Nueva York, NY: LEA. Stephens, A. C., Fonger, N., Strachota, S., Isler, I., Blanton, M. L., Knuth, E. y Murphy Gardiner, A. (2017). A Learning Progression for Elementary Students’ Functional Thinking. Mathematical Thinking and Learning, 19(3), 143-166. https://doi.org/10.1080/10986065.2017.1328636 Strachota, S., Knuth, E. y Blanton, M. (2018). Cycles of generalizing activities in the classroom. En C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds: The global evolution of an emerging field of research and practice (pp. 351–378). Springer. https://doi.org/10. 1007/978-3-319-68351-5_15 Ureña, J., Ramírez, R. y Molina, M. (2019). Representations of the generalization of a functional relationship and the relation with the interviewer’s mediation / Representaciones de la generalización de una relación funcional y el vínculo con la mediación del entrevistador. Infancia y Aprendizaje, 42(3), 570-614. https://doi.org/10.1080/02103702.2019.1604020 Ursini S. (2001) General methods: a way of entering the world of Algebra. En R. Sutherland, T. Rojano, A. Bell y R. Lins (Eds), Perspectives on School Algebra. (pp. 209-229). Springer. https://doi.org/10.1007/0-306-47223-6_12 Vergel, R. (5 – 10 de mayo 2019). Una posible zona conceptual de formas de pensamiento aritmético "sofisticado" y proto-formas de pensamiento algebraico. XV Conferencia Interamericana de Educación Matemática. CIAEM-IACME. Vygotski, L. S. (1979). Mind in Society: The Development of Higher Psychological Processes [El Desarrollo de los procesos psicológicos superiores]. (Trad. S. Furió). Harvard University Press y Editorial Planeta. (Trabajo original publicado en 1978). Warren, E., Miller, J. y Cooper, T. J. (2013). Exploring young students’ functional thinking. PNA, 7(2), 75–84. Wertsch, J. V. (1995). Vygotsky and the social formation of mind (J. Zanón & M. Cortés, Trans.; 2nd ed.). Ediciones Paidós. (Original work published 1985). Wertsch, J. y Stone, C. A. (1978). Microgenesis as a tool for developmental analysis. Quaterly Newsletter Laboratory of Comparative Human Cognition, 1(1) 8-10.