Exploring bachelard’s epistemological obstacles in physical chemistry textbooks: the case of thermodynamics concepts
Tipo de documento
Autores
Lista de autores
Souza, José, Passos, Camila y Netz, Paulo
Resumen
Although textbooks are used at all education levels, they are not free from errors, mistakes, and misconceptions. In the literature, many works have investigated textbooks in various ways, with particular emphasis on the influence of language. Objectives: The objectives of this study were to identify types of epistemological obstacles, according to Gaston Bachelard’s philosophy, associated with the Classical Thermodynamics concepts in higher education physical chemistry textbooks commonly utilised in chemistry and related programs in Brazil. Design: We employed a qualitative methodology based on content analysis to identify thermodynamics concepts and types of epistemological obstacles in higher education textbooks. Setting and participants: For the identification of epistemological obstacles, we selected three representative textbooks used in university programs: P. W. Atkins, D. Ball, and I. Levine. Data collection and analysis: We only analysed the chapters that addressed Classical Thermodynamics, specifically focusing on the concepts of temperature, heat, work, energy, internal energy, and entropy. We used a priori categories that encompassed the obstacles identified by Bachelard. Results: Our findings revealed the presence of general knowledge, verbal, substantialist, and realist obstacles in the selected textbooks, with the concepts most associated with these obstacles being heat, energy, and entropy. Conclusions: By applying Bachelard’s ideas, we were able to identify epistemological obstacles in higher education textbooks. This may be one of the causes of the perpetuation of misconceptions and historical, scientific errors related to the concepts of thermodynamics.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Desde disciplinas académicas | Epistemología | Errores | Libros de texto
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
25
Número
5
Rango páginas (artículo)
30-58
ISSN
21787727
Referencias
Anderson, S. Y. C., Ong, W. S. Y., & Momsen, J. L. (2020). Support for instructional scaffolding with 1H NMR spectral features in organic chemistry textbook problems. Chemistry Education Research and Practice, 21(3), 749–764. https://doi.org/10.1039/C9RP00252A Aslam, H. & Saeed, M. (2022). Effect of Digitized Textbooks on Secondary School Students’ Domains of Learning. International Journal of Technology in Education, 5(2), 369–382. https://doi.org/10.46328/ijte.226 Atarés, L., Canet, M. J., Trujillo, M., Benlloch-Dualde, J. V., Paricio Royo, J., & Fernandez-March, A. (2021). Helping Pregraduate Students Reach Deep Understanding of the Second Law of Thermodynamics. Education Sciences, 11(9), Article 9. https://doi.org/10.3390/educsci11090539 Atkins, P., Paula, J. de & Keeler, J. (2018). Physical Chemistry (11th ed.). Oxford University Press, USA. Bachelard, G. (2002). The Formation of Scientific Mind (M. M. Jones, Trad.). Clinamen. Ball, D. W. (2014). Physical Chemistry (2nd ed.). CENGAGE Learning. Bardin, L. (2016). Análise de Conteúdo (1st ed.). Edições 70. Becker, M. L. & Nilsson, M. R. (2021). College Chemistry Textbooks Fail on Gender Representation. Journal of Chemical Education, 98(4), 1146– 1151. https://doi.org/10.1021/acs.jchemed.0c01037 Ben-Naim, A. (2011). Entropy: Order or Information. Journal of Chemical Education, 88(5), 594–596. https://doi.org/10.1021/ed100922x Chang, H., Duncan, K., Kim, K., & Paik, S.-H. (2020). Electrolysis: What textbooks don’t tell us. Chemistry Education Research and Practice, 21(3), 806–822. https://doi.org/10.1039/C9RP00218A Chen, X., de Goes, L. F., Treagust, D. F., & Eilks, I. (2019). An Analysis of the Visual Representation of Redox Reactions in Secondary Chemistry Textbooks from Different Chinese Communities. Education Sciences, 9(1). https://doi.org/10.3390/educsci9010042 Acta Sci. (Canoas), 25(5), 30-58, Sep./Oct. 2023 53 Chen, X. & Eilks, I. (2019). An Analysis of the Representation of Practical Work in Secondary Chemistry Textbooks from Different Chinese Communities. Science Education International, 30(4), 354–363. https://doi.org/10.33828/sei.v30.i4.13 Day, E. L. & Pienta, N. J. (2019). Transitioning to ebooks: Using Interaction Theory as a Lens to Characterize General Chemistry Students’ Use of Course Resources. Journal of Chemical Education, 96(9), 1846–1857. https://doi.org/10.1021/acs.jchemed.9b00011 Detken, F. & Brückmann, M. (2021). Accessing Young Children’s Ideas about Energy. Education Sciences, 11(2), Article 2. https://doi.org/10.3390/educsci11020039 Doige, C. A. & Day, T. (2012). A Typology of Undergraduate Textbook Definitions of ‘Heat’ across Science Disciplines. International Journal of Science Education, 34(5), 677–700. https://doi.org/10.1080/09500693.2011.644820 Donnelly, J. & Hernández, F. E. (2018). Fusing a reversed and informal learning scheme and space: Student perceptions of active learning in physical chemistry. Chemistry Education Research and Practice, 19(2), 520–532. https://doi.org/10.1039/C7RP00186J Donnelly, J. & Winkelmann, K. (2021). Analysis of the LearningCenteredness of Physical Chemistry Syllabi. Journal of Chemical Education, 98(6), 1888–1897. https://doi.org/10.1021/acs.jchemed.1c00225 Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman Lectures on Physics. Vol. I Ch. 4: Conservation of Energy. https://www.feynmanlectures.caltech.edu/I_04.html Filho, C. & Carneiro, J. E. (2006). Educação científica na perspectiva bachelardiana: ensino enquanto formação. Ensaio Pesquisa em Educação em Ciências (Belo Horizonte), 8, 08–31. https://doi.org/10.1590/1983-21172006080102 Finkenstaedt-Quinn, S. A., Halim, A. S., Kasner, G., Wilhelm, C. A., Moon, A., Gere, A. R., & Shultz, G. V. (2020). Capturing student conceptions of thermodynamics and kinetics using writing. Chemistry Education Research and Practice, 21(3), 922–939. https://doi.org/10.1039/C9RP00292H 54 Acta Sci. (Canoas), 25(5), 30-58, Sep./Oct. 2023 Finzi, S. N. (2008). Discutindo os obstáculos epistemológicos de Gaston Bachelard com um grupo de professores da rede pública da cidade de São Paulo. In: Anais do XIV Encontro Nacional de Ensino de Química, Curitiba, PR, Brasil. Firetto, C. M., Van Meter, P. N., Kottmeyer, A. M., Turns, S. R., & Litzinger, T. A. (2021). An extension of the Thermodynamics Conceptual Reasoning Inventory (TCRI): Measuring undergraduate students’ understanding of introductory thermodynamics concepts. International Journal of Science Education, 43(15), 2555–2576. https://doi.org/10.1080/09500693.2021.1975847 Galbraith, J. M., Shaik, S., Danovich, D., Braïda, B., Wu, W., Hiberty, P., Cooper, D. L., Karadakov, P. B., & Dunning, T. H. Jr. (2021). Valence Bond and Molecular Orbital: Two Powerful Theories that Nicely Complement One Another. Journal of Chemical Education, 98(12), 3617–3620. https://doi.org/10.1021/acs.jchemed.1c00919 Gee, H. W. I., Gorton, E. S., Cho, S., & Fynewever, H. (2022). Not All Chemists are White Men: Incorporating Diversity in the General Chemistry Curriculum. Journal of Chemical Education, 99(3), 1176– 1182. https://doi.org/10.1021/acs.jchemed.1c00632 Gravier, S. & Ouvrier-Buffet, C. (2022). The mathematical background of proving processes in discrete optimization—Exemplification with Research Situations for the Classroom. ZDM – Mathematics Education, 54(4), 925–940. https://doi.org/10.1007/s11858-022- 01400-3 Gulacar, O., Wu, A., Prathikanti, V., Vernoy, B., Kim, H., Bacha, T., Oentoro, T., Navarrete-Pleitez, M., & Reedy, K. (2022). Benefits of desirable difficulties: Comparing the influence of mixed practice to that of categorized sets of questions on students’ problem-solving performance in chemistry. Chemistry Education Research and Practice, 23(2), 422–435. https://doi.org/10.1039/D1RP00334H Hariyani, M., Herman, T., & Prabawanto, D. S. S. (2022). Exploration of Student Learning Obstacles in Solving Fraction Problems in Elementary School. Exploration of Student Learning Obstacles in Solving Fraction Problems in Elementary School, 8(3), 505–515. Hillesheim, S. F. & Moretti, M. T. (2019). The Consolidation of Rules of Signs and Stages of the Scientific Spirit in Bachelard. Acta Scientiae, Acta Sci. (Canoas), 25(5), 30-58, Sep./Oct. 2023 55 21(5), Article 5. https://doi.org/10.17648/acta.scientiae.5013 Jensen, W. B. (2015). The Importance of Kinetic Metastability: Some Common Everyday Examples. Journal of Chemical Education, 92(4), 649–654. https://doi.org/10.1021/ed500743r Johnson, S., Meyers, M., Hyme, S., & Leontyev, A. (2020). Green Chemistry Coverage in Organic Chemistry Textbooks. Journal of Chemical Education, 97(2), 383–389. https://doi.org/10.1021/acs.jchemed.9b00397 Kandaga, T., Rosjanuardi, R., & Juandi, D. (2022). Epistemological Obstacle in Transformation Geometry Based on van Hiele’s Level. Eurasia Journal of Mathematics, Science and Technology Education, 18(4), em2096. https://doi.org/10.29333/ejmste/11914 Keifer, D. (2019). Enthalpy and the Second Law of Thermodynamics. Journal of Chemical Education, 96(7), 1407–1411. https://doi.org/10.1021/acs.jchemed.9b00326 Khaddoor, R., Al-Amoush, S., & Eilks, I. (2017). A comparative analysis of the intended curriculum and its presentation in 10th grade chemistry textbooks from seven Arabic countries. Chemistry Education Research and Practice, 18(2), 375–385. https://doi.org/10.1039/C6RP00186F Kvittingen, L., Sjursnes, B. J., & Schmid, R. (2021). Limonene in Citrus: A String of Unchecked Literature Citings? Journal of Chemical Education, 98(11), 3600–3607. https://doi.org/10.1021/acs.jchemed.1c00363 Lambert, F. L. (1999). Shuffled Cards, Messy Desks, and Disorderly Dorm Rooms - Examples of Entropy Increase? Nonsense! Journal of Chemical Education, 76(10), 1385. https://doi.org/10.1021/ed076p1385 Lambert, F. L. (2002). Entropy Is Simple, Qualitatively. Journal of Chemical Education, 79(10), 1241. https://doi.org/10.1021/ed079p1241 Leavy, P. (Org.). (2014). The Oxford Handbook of Qualitative Research. Oxford University Press. Levine, I. N. (2009). Physical Chemistry (6th ed.). McGraw-Hill. Lôbo, S. F. (2008). O ensino de química e a formação do educador químico, 56 Acta Sci. (Canoas), 25(5), 30-58, Sep./Oct. 2023 sob o olhar bachelardiano. Ciência & Educação (Bauru), 14, 89–100. https://doi.org/10.1590/S1516-73132008000100006 Loguercio, R. de Q., Samrsla, V. E. E., & Del Pino, J. C. (2001). A dinâmica de analisar livros didáticos com os professores de química. Química Nova, 24(4), 557–562. https://doi.org/10.1590/S0100- 40422001000400018 Lopes, A. R. C. (1992). Livros Didáticos: Obstáculos ao Aprendizado da Ciência Química. I - Obstáculos Animistas e Realistas. Quimica Nova, 15(3), 254–261. Martorano, S. A. de A. (2014). Investigando a abordagem do tema Cinética Química nos livros didáticos dirigidos ao ensino médio / Investigating a approaching of the topic of chemical kinetics in textbooks addressed to high school education from the ideas of Imre Lakatos. Acta Scientiae, 16(1), Article 1. Meli, K., Koliopoulos, D. & Lavidas, K. (2022). A Model-Based Constructivist Approach for Bridging Qualitative and Quantitative Aspects in Teaching and Learning the First Law of Thermodynamics. Science & Education, 31(2), 451–485. https://doi.org/10.1007/s11191-021-00262-7 Meyer, D. & Pietzner, V. (2022). Reading textual and non-textual explanations in chemistry texts and textbooks – a review. Chemistry Education Research and Practice, 23(4), 768–785. https://doi.org/10.1039/D2RP00162D Nilsson, T. & Niedderer, H. (2014). Undergraduate students’ conceptions of enthalpy, enthalpy change and related concepts. Chemistry Education Research and Practice, 15(3), 336–353. https://doi.org/10.1039/C2RP20135F Park, C., Lee, C. Y., & Hong, H.-G. (2020). Undergraduate Students’ Understanding of Surface Tension Considering Molecular Area. Journal of Chemical Education, 97(11), 3937–3947. https://doi.org/10.1021/acs.jchemed.0c00447 Pazinato, M. S., Bernardi, F. M., Miranda, A. C. G., & Braibante, M. E. F. (2021). Epistemological Profile of Chemical Bonding: Evaluation of Knowledge Construction in High School. Journal of Chemical Education, 98(2), 307–318. https://doi.org/10.1021/acs.jchemed.0c00353 Acta Sci. (Canoas), 25(5), 30-58, Sep./Oct. 2023 57 Pulukuri, S. & Abrams, B. (2021). Improving Learning Outcomes and Metacognitive Monitoring: Replacing Traditional Textbook Readings with Question-Embedded Videos. Journal of Chemical Education, 98(7), 2156–2166. https://doi.org/10.1021/acs.jchemed.1c00237 Quílez, J. (2021). Le Châtelier’s Principle a Language, Methodological and Ontological Obstacle: An Analysis of General Chemistry Textbooks. Science & Education, 30(5), 1253–1288. https://doi.org/10.1007/s11191-021-00214-1 Roncevic, T. N., Cuk, Ž. Ð., Rodic, D. D., Segedinac, M. D., & Horvat, S. A. (2019). Students’ Abilities of Reading Images in General Chemistry: The Case of Realistic, Conventional and Hybrid Images. In: Proceedings of the International Baltic Symposium on Science and Technology Education. Rusek, M. & Vojíř, K. (2019). Analysis of text difficulty in lower-secondary chemistry textbooks. Chemistry Education Research and Practice, 20(1), 85–94. https://doi.org/10.1039/C8RP00141C Schubert, F. E. (2019). Rumford’s Experimental Challenge to Caloric Theory: “Big Science” 18th-Century Style with Important Results for Chemistry and Physics. Journal of Chemical Education, 96(9), 1955– 1960. https://doi.org/10.1021/acs.jchemed.9b00039 Shehab, S. S. & BouJaoude, S. (2017). Analysis of the Chemical Representations in Secondary Lebanese Chemistry Textbooks. International Journal of Science and Mathematics Education, 15(5), 797–816. https://doi.org/10.1007/s10763-016-9720-3 Souza, P. F. de, Ferrari, P. C., & Queiroz, J. R. de O. (2018). História Recorrente e o Caráter Provisório da Ciência no Ensino da Natureza da Luz. Acta Scientiae, 20(4), Article 4. https://doi.org/10.17648/acta.scientiae.v20iss4id4096 Trintin, R. da S. & Gomes, L. C. (2018). Perfis Epistemológicos dos Livros Didáticos de Física do PNLD de 2018. Acta Scientiae, 20(2), Article 2. https://doi.org/10.17648/acta.scientiae.v20iss2id3804 Upahi, J. E., & Ramnarain, U. (2019). Representations of chemical phenomena in secondary school chemistry textbooks. Chemistry Education Research and Practice, 20(1), 146–159. https://doi.org/10.1039/C8RP00191J 58 Acta Sci. (Canoas), 25(5), 30-58, Sep./Oct. 2023 Vojíř, K., & Rusek, M. (2022). Of teachers and textbooks: Lower secondary teachers’ perceived importance and use of chemistry textbook components. Chemistry Education Research and Practice, 23(4), 786–798. https://doi.org/10.1039/D2RP00083K Yun, E. (2020). Correlation between concept comprehension and mental semantic networks for scientific terms. Research in Science & Technological Education, 38(3), 329–354. https://doi.org/10.1080/02635143.2020.1777095
Proyectos
Cantidad de páginas
29