La representación en la resolución de problemas matemáticos: un análisis de estrategias metacognitivas de estudiantes de secundaria
Tipo de documento
Autores
Lista de autores
Arteaga-Martínez, Blanca, Macías, Jesús y Pizarro, Noemí
Resumen
El artículo tiene como objetivo mostrar la importancia de la resolución de problemas verbales de matemáticas y la regulación metacognitiva durante aquella. Por ello, queremos sensibilizar a docentes de educación secundaria respecto al uso de dicha resolución, como recurso exploratorio de las estrategias metacognitivas que el estudiante pone en funcionamiento y que pueden servirle de información para adecuar la metodología del aula, tanto de forma individual como colectiva. Con el afán de conseguirlo, aportamos un marco teórico centrado en el uso y la utilidad de la resolución de problemas como recurso didáctico, se presta especial atención a las representaciones que los estudiantes emplean durante esa resolución, la cual resulta un elemento facilitador de la comprensión. La investigación cuasi-experimental se ha desarrollado con una muestra no aleatoria de 99 estudiantes del primer y tercer curso de educación secundaria, al resolver problemas de forma guiada, centra los contenidos en el manejo numérico y geométrico. Los resultados evidencian distinciones en las estrategias metacognitivas aplicadas por los alumnos durante la resolución en ambos tipos de problemas, por lo que nos planteamos que la mediación del docente debe diferenciarse, a partir del bloque de contenido matemático con el que se esté trabajando.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Cuasi-experimental | Gestión de aula | Resolución de problemas | Verbal
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Arteaga, B. & Macías, J. (2016). La representación en la resolución de problemas matemáticos como diagnóstico de estrategias metacognitivas. En F. España (ed.) XVI Congreso de Enseñanza y Aprendizaje de las Matemáticas (pp. 118-126). Cádiz, España: Sociedad Andaluza de Educación Matemática THALES. Recuperado de https://thales.cica.es/xviceam/actas/pdf/actas.pdf Artigue, M. & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45(6), 797-810. doi: https://doi.org/10.1007/s11858-013-0506-6 Blanco, L. & Cárdenas, J. A. (2013). La resolución de problemas como contenido en el currículo de primaria y secundaria. Campo Abierto, 32(1), 137-156. Recuperado de https://goo.gl/3pnaQF Coleoni, E. & Buteler, L. (2008). Recursos metacognitivos durante la resolución de un problema de Física. Investigações em Ensino de Ciências, 13(3), 371-383. Recuperado de https:// www.if.ufrgs.br/cref/ojs/index.php/ienci/article/view/447/265 Contreras, J. & Del Pino, C. (2007). Resolución de problemas en contextos matemáticos. Unión. Revista iberoamericana de Educación Matemática, 12, 27-36. Recuperado de http://www.fisem.org/www/union/revistas/2007/12/Union_012_005.pdf Crespo, S. (2003). Learning to pose mathematical problems: exploring changes in preservice teachers’ practices. Educational Studies in Mathematics, 52(3), 243-270. doi: https://doi.org/10.1023/A:1024364304664 Desoete, A. (2007). La evaluación y mejora del proceso de enseñanza-aprendizaje de las matemáticas a través de la metacognición. Revista Electrónica de Investigación Psicoeducativa, 5(13), 705-730. doi: https://doi.org/10.25115/ejrep.v5i13.1243 Domenech, M. (2004). El papel de la inteligencia y de la metacognición en la resolución de problemas (Tesis doctoral). Universidad Rovira I Virgili. Tarragona (España). https://www.tdx.cat/handle/10803/8958 Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Science Cognitives, 5, 37-65. Traducción: Registros de representación semiótica y funcionamiento cognitivo del pensamiento. E. Hitt, (Ed.) Investigaciones en Matemática Educativa II (pp. 173-201). México: Grupo Editorial Iberoamérica. Duval, R. (2004). Como hacer que los alumnos entren en las representaciones geométricas. Cuatro entradas y... una quinta. En AA.VV. Números, formas y volúmenes en el entorno del niño (pp. 159-187). Madrid: Ministerio de Educación y Ciencia. Duval, R. (2016). Un análisis cognitivo de problemas de comprensión en el aprendizaje de las matemáticas. Comprensión y aprendizaje en matemáticas: perspectivas semióticas seleccionadas (pp. 61-94). Colombia: Universidad Distrital Francisco José de Caldas. Elosua, M. R. (1993). Estrategias para enseñar y aprender a pensar. Madrid: Ediciones Narcea. Ellerton, N. F. (2013). Engaging pre-service middle- school teacher-education students in mathematical problem posing: development of an active learning framework. Educational Studies in Mathematics, 83(1), 87-101. doi: https://doi.org/10.1007/s10649-012-9449-z English, L. D. & Gainsburg, J. (2016). Problem solving in a 21st-century mathematics curriculum. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 313–335). New York: Taylor & Francis. Flavell, J. H. (1999). Cognitive development: Children’s knowledge about the mind. Annual Review of Psychology, 50, 21-45. doi: https://doi.org/10.1146/annurev.psych.50.1.21 Gaulin, C. (2001). Tendencias actuales de la resolución de problemas. Sigma, 19, 51-63. Recuperado de http://www.hezkuntza.ejgv.euskadi.eus/r43573/es/contenidos/informacion/dia6_sigma/es_sigma/adjuntos/sigma_19/7_Tendencias_Actuales.pdf García, P.; San José, V. & Solaz-Portolés, J. J. (2015). Efectos de las características del problema, captación de su estructura y uso de analogías sobre el éxito de los estudiantes de secundaria en la resolución de problemas. Teoría de la Educación. Revista Interuniversitaria, 27(2), 221-244. doi: http://dx.doi.org/10.14201/teoredu2015272221244 Kapa, E. (2007). Transfer from structured to open-ended problem solving in a computerized metacognitive environment. Learning and Instruction, 17, 688-707. doi: https://doi.org/10.1016/j.learninstruc.2007.09.019 Kramarski, B., Mevarech, Z. R. & Arami, M. (2002). The effects of metacognitive instruction on solving mathematical authentic tasks. Educational studies inmathematics, 49(2), 225-250. doi: https://doi.org/10.1023/A:1016282811724 Lampert, M. (1990). When the Problem Is Not the Question and the Solution Is Not the Answer: Mathematical Knowing and Teaching. American Educational Research Journal, 27(1), 29-63. doi: https://doi. org/10.3102/00028312027001029 Leikin, R. & Grossman, D. (2013). Teachers Modify Geometry Problems: From proof to investigation. Educational Studies in Mathematics, 82(3), 515-531. doi: https://doi.org/10.1007/s10649-012-9460-4 Lesh, R. & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.), The Second Handbook of Research on Mathematics Teaching and Learning (pp. 763-804). Charlotte, NC: Information Age Publishing. Lester, F. K. (1983). Trends and issues in mathematical problem-solving research. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 229-261). Orlando, FL: Academic Press. Lester, F. K. & Kehle, P. E. (2003). From problem solving to modeling: The evolution of thinking about research on complex mathematical activity. En R. Lesh y H. M. Doerr (Eds.), Beyond constructivism. Models and modeling perspectives on mathematical problem solving, learning, and teaching (pp. 501-517). Mahwah, NJ: Lawrence Erlbaum Associates. Loh, M. Y. & Lee, N. H. (2019). The Impact of Various Methods in Evaluating Metacognitive Strategies in Mathematical Problem Solving. In P. Liljedahl & M. Santos-Trigo (Ed.). Mathematical Problem Solving (pp. 155-176). Cham: Springer. National Council of Teachers of Mathematics NCTM (2000). Principles and Standards for School Mathematics. Reston: NCTM. Otani, H. & Widner, R. L. (2005). Metacognition: New Issues and Approaches Guest Editors' Introduction. The Journal of General Psychology, 132(4), 329-334. doi: https://doi.org/10.3200/GENP.132.4.329-334 Özsoy, G. & Ataman, A. (2009). The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education, 1(2), 67-82. doi: https://files.eric.ed.gov/fulltext/ED508334.pdf Pelczer, I. & Gamboa, F. (2008). Problem posing strategies of mathematically gifted students. En R. Leikin (Ed.). Proccedings of the 5th International Conference on Creativity in Mathematics and the Education of Gifted Students (pp. 193-199). Tel Aviv: Center for Educational Technology. Peñalva, L. P. (2010). Las matemáticas en el desarrollo de la metacognición. Política y cultura, 33, 135-151. Recuperado de https://polcul.xoc.uam.mx/index.php/polcul/article/view/1112/1087 Pifarré, M. & Sanuy, J. (2001). La enseñanza de estrategias de resolución de problemas matemáticos en la ESO: un ejemplo concreto. Revista Enseñanza de las ciencias, revista de investigación y experiencias didácticas, 19(2), 297-308. Recuperado de https://www.raco.cat/index.php/Ensenanza/article/view/21745/21579 Puente, A. (1993). Modelos mentales y habilidades en la solución de problemas aritméticos verbales. Revista de Psicología General y Aplicada, 46(2), 149-160. Rellensmann, J.; Schukajlow, S. & Leopold, C. (2017). Make a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modeling performance. Educational Studies in Mathematics, 95(1), 53-78. doi: https://doi.org/10.1007/s10649-016-9736-1 Rigo, M.; Paez, D. A. & Gómez, B. (2010). Prácticas metacognitivas que el profesor de nivel básico promueve en sus clases ordinarias de matemáticas. Un marco interpretativo. Enseñanza de las Ciencias 28(3), 405-416. Recuperado de https://www.raco.cat/index.php/Ensenanza/article/view/210808/353417 Rodríguez, E. (2005). Metacognición, resolución de problemas y enseñanza de las matemáticas. Una propuesta integradora desde un enfoque antropológico (Tesis doctoral). Universidad Complutense de Madrid. Recuperado de https://eprints.ucm.es/7256/1/T28687.pdf Rowland, T.; Huckstep, P. & Thwaites, A. (2003). Observing Subject Knowledge in Primary Mathematics Teaching. Proceedings of the British Society for Research into Learning Mathematics, 23(1), 37-42. Recuperado de http://www.skima.maths-ed.org.uk/BSRLMNotts16Nov03.pdf Santos, D. A. & Lozada, G. A. (2013). ¿Es posible hacer evidentes los procesos de metacognición en la resolución de problemas, fase 2? Revista Científica (especial), 42-45. doi: https://doi.org/10.14483/23448350.5482 Schoenfeld, A. H. (1987). What's all the fuss about metacognition? En A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum Associates. Silva, C. (2004). Educación en matemática y procesos metacognitivos en el aprendizaje. Revista del Centro de Investigación Universidad La Salle, 7, 81-91. Singer, F. M.; Ellerton, N. & Cai, J. (2013). Problem- posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83(1), 1-7. doi: https://doi.org/10.1007/s10649-013-9478-2 Stacey, K. (2005). The place of problem solving in contemporary mathematics curriculum documents. The Journal of Mathematical Behavior, 24(3-4), 341-350. doi: https://doi.org/10.1016/j.jmathb.2005.09.004 Stanic, G. & Kilpatrick, J. (1989). Historical perspectives on problem solving in the mathematics curriculum. En R. Charles y E. Silver (Eds.), The teaching and assessing of mathematical problem solving (pp. 1-22). Reston, VA: NCTM. Sternberg, R. J. (1988). Intelligence. En R. J. Sternberg y E. E. Smith, The psychology of Human Thought. Cambridge. Cambridge University Press. Swanson, H. L. (1990). Influence of metacognitive knowledge and aptitude on problem solving. Journal of Educational Psychology, 82(2), 306-314. doi: http://dx.doi.org/10.1037/0022-0663.82.2.306 Vila, A. & Callejo, M. L. (2004). Matemáticas para aprender a pensar. El papel de las creencias en la resolución de problemas. Madrid: Narcea.