Mathematics Teachers’ Feedback Responses to Students’ Errors and Unexpected Strategies
Tipo de documento
Autores
Lista de autores
Pinzón, Andrés, Gómez, Pedro y González, María José
Resumen
A part of students learning in the classroom depends on how the teacher responds to their thinking. The literature has separately addressed teachers’ feedback responses to errors and unexpected strategies that students put into play when solving tasks. We propose a framework to analyze these responses together based on three criteria: the focus of the answers (teacher or student), the type of knowledge (conceptual or procedural) that the teacher puts into play in the teacher-centered answers, and the types of actions (asking and proposing) involved in student-centered responses. We codified and analyzed the feedback responses of a group of mathematics teachers to a questionnaire that inquired about their curricular practices. We found similarities in their reports of responses to students’ errors and unexpected strategies: two-thirds of teachers have a teacher-centered response. For the student-centered answers, the number of responses of the teacher in which he/she proposes activities is three times the number of responses in which he/she asks students questions. Furthermore, responses to unexpected strategies differ from responses to errors because teachers evaluate, correct, and accept those strategies.
Fecha
2022
Tipo de fecha
Estado publicación
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
47
Número
3
Rango páginas (artículo)
19-34
ISSN
1835517X
Referencias
Ball, D. L., & Bass, H. (2003). Knowing mathematics for teaching. In R. Strässer, G. Brandell, & B. Grevholm (Eds.), Educating for the future. Proceedings of an international symposium on mathematics teacher education (pp. 159-178). Royal Swedish Academy of Sciencies. Bishop, A. J. (2008). Decision-making, the intervening variable. In P. Clarkson & N. Presmeg (Eds.), Critical issues in mathematics education (pp. 29-35). Springer. https://doi.org/https://doi.org/10.1007/978-0-387-09673-5_3 Boaler, J., & Brodie, K. (2004). The importan, nature and impact of teacher questions. North American Chapter of the International Group for the Psychology of Mathematics Education October 2004 Toronto, Ontario, Canada, 774. Brodie, K. (2011). Working with learners’ mathematical thinking: Towards a language of description for changing pedagogy. Teaching and Teacher Education, 27(1), 174-186. https://doi.org/https://doi.org/10.1016/j.tate.2010.07.014 Campbell, P. F., Rowan, T. E., & Suarez, A. R. (1998). What criteria for student-invented algorithms. The teaching and learning of algorithms in school mathematics, 49-55. Cañadas, M. C., Gómez, P., & Pinzón, A. (2018). Análisis de contenido. In P. Gómez (Ed.), Formación de profesores de matemáticas y práctica de aula: conceptos y técnicas curriculares (pp. 53-112). Universidad de los Andes. http://funes.uniandes.edu.co/11904/ Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 181- 199. https://doi.org/https://doi.org/10.3102/0013189X08331140 Ernest, P. (1989). The impact of beliefs on the teaching of mathematics. In P. Ernest (Ed.), Mathematics Teaching: The State of the Art (pp. 249-254). Falmer Press. González, M. J., & Gómez, P. (2018). Análisis cognitivo. In P. Gómez (Ed.), Formación de profesores de matemáticas y práctica de aula: conceptos y técnicas curriculares (pp. 113-196). Universidad de los Andes. http://funes.uniandes.edu.co/11905/ Guo, W., & Wei, J. (2019). Teacher feedback and students’ self-regulated learning in mathematics: A study of Chinese secondary students. The Asia-Pacific Education Researcher, 28(3), 265-275. https://doi.org/https://doi.org/10.1007/s40299-019- 00434-8 Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi.org/https://doi.org/10.3102/003465430298487 Herbst, P., Chazan, D., Kosko, K. W., Dimmel, J., & Erickson, A. (2016). Using multimedia questionnaires to study influences on the decisions mathematics teachers make in instructional situations. ZDM, 48(1), 167-183. https://doi.org/10.1007/s11858-015- 0727-y Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-23). Lawrence Erlbaum Associates. Ma, L. (1999). Knowing and teaching mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Lawrence Erlbaum Associates. https://doi.org/https://doi.org/10.4324/9781410602589 Movshovitz-Hadar, N., Zaslavsky, O., & Inbar, S. (1987). An empirical classification model for errors in high school mathematics. Journal For Research in Mathematics Education, 18(1), 3-14. https://doi.org/https://doi.org/10.2307/749532 Rico, L. (1995). Conocimiento numérico y formación del profesorado. Universidad de Granada. Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology, 91(1), 175-189. https://doi.org/https://doi.org/10.1037/0022-0663.91.1.175 Santagata, R. (2005). Practices and beliefs in mistake-handling activities: A video study of Italian and US mathematics lessons. Teaching and Teacher Education, 21(5), 491- 508. https://doi.org/https://doi.org/10.1016/j.tate.2005.03.004 Sarkar Arani, M. R., Shibata, Y., Sakamoto, M., Iksan, Z., Amirullah, A. H., & Lander, B. (2017). How teachers respond to students’ mistakes in lessons. International Journal for Lesson and Learning Studies, 6(3), 249-267. https://doi.org/10.1108/IJLLS-12- 2016-0058 Schleppenbach, M., Flevares, L. M., Sims, L. M., & Perry, M. (2007). Teachers’ responses to student mistakes in Chinese and US mathematics classrooms. The Elementary school journal, 108(2), 131-147. https://doi.org/https://doi.org/10.1086/525551 Son, J.-W. (2013). How preservice teachers interpret and respond to student errors: ratio and proportion in similar rectangles. Educational Studies in Mathematics, 84(1), 49-70. https://doi.org/https://doi.org/10.1007/s10649-013-9475-5 Son, J.-W. (2016). Moving beyond a traditional algorithm in whole number subtraction: Preservice teachers’ responses to a student’s invented strategy. Educational Studies in Mathematics : An International Journal, 93(1), 105-129. https://doi.org/10.1007/s10649-016-9693-8 Son, J.-W., & Crespo, S. (2009). Prospective teachers’ reasoning and response to a student’s non-traditional strategy when dividing fractions. Journal of Mathematics Teacher Education, 12(4), 235-261. https://doi.org/https://doi.org/10.1007/s10857-009-9112-5 Son, J.-W., & Sinclair, N. (2010). How Preservice Teachers Interpret and Respond to Student Geometric Errors. School Science and Mathematics, 110(1), 31-46. https://doi.org/https://doi.org/10.1111/j.1949-8594.2009.00005.x Star, J. R. (2005). Reconceptualizing Procedural Knowledge. Journal, for Research in Mathematics Education. 36(5), 404-411. Tulis, M. (2013). Error management behavior in classrooms: Teachers' responses to student mistakes. Teaching and Teacher Education, 33, 56-68. https://doi.org/http://dx.doi.org/10.1016/j.tate.2013.02.003 Uysal, H. H. (2012). Evaluation of an in-service training program for primary-school language teachers in Turkey. Australian Journal of Teacher Education, 37(7), 14-29, Article 2. https://doi.org/http://dx.doi.org/10.14221/ajte.2012v37n7.4 Varela, F. J., & Shear, J. (1999). First-person methodologies: What, why, how. Journal of Consciousness studies, 6(2-3), 1-14. Voerman, L., Meijer, P. C., Korthagen, F. A., & Simons, R. J. (2012). Types and frequencies of feedback interventions in classroom interaction in secondary education. Teaching and Teacher Education, 28(8), 1107-1115. https://doi.org/https://doi.org/10.1016/j.tate.2012.06.006