Uma análise semiótica e cognitiva na aprendizagem de áreas de triângulos e quadriláteros
Tipo de documento
Lista de autores
Arinos, Cleide R.M, De-Freitas, Jose L.M y Rachidi, Mustafa
Resumen
Este artigo analisa mudanças de representação e de registro no cálculo de áreas de triângulos e quadriláteros. As atividades descritas foram realizadas por alunos do quinto e do sexto ano do ensino fundamental de uma escola privada de Campo Grande, MS. Este estudo fundamenta-se na teoria de registros de representação semiótica, de Duval, e em dois de seus elementos teóricos que tratam dos olhares e apreensões para a aprendizagem em geometria. Adotou-se como metodologia a engenharia didática, de Artigue. Constatou-se que solucionar as atividades por meio da exploração heurística das figuras, da desconstrução dimensional e do olhar não icônico, transitando em diferentes representações, permitiu aprendizagens sobre o cálculo de áreas. A diversidade de registros e estratégias nesses cálculos, nessas perspectivas, favoreceu soluções distintas, contribuindo para a superação de dificuldades e o desenvolvimento de autonomia em geometria, oportunizando um novo modo de aprender, de raciocinar e principalmente de olhar para uma figura geométrica.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Estimación de medidas | Gestión de aula | Magnitudes | Semiótica | Unidimensional
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Referencias
Este artigo analisa mudanças de representação e de registro no cálculo de áreas de triângulos e quadriláteros. As atividades descritas foram realizadas por alunos do quinto e do sexto ano do ensino fundamental de uma escola privada de Campo Grande, MS. Este estudo fundamenta-se na teoria de registros de representação semiótica, de Duval, e em dois de seus elementos teóricos que tratam dos olhares e apreensões para a aprendizagem em geometria. Adotou-se como metodologia a engenharia didática, de Artigue. Constatou-se que solucionar as atividades por meio da exploração heurística das figuras, da desconstrução dimensional e do olhar não icônico, transitando em diferentes representações, permitiu aprendizagens sobre o cálculo de áreas. A diversidade de registros e estratégias nesses cálculos, nessas perspectivas, favoreceu soluções distintas, contribuindo para a superação de dificuldades e o desenvolvimento de autonomia em geometria, oportunizando um novo modo de aprender, de raciocinar e principalmente de olhar para uma figura geométrica. Aldon, G. (2008) La place des TICE dans une démarche expérimentale en mathématiques, Actes de l'Université d’Été de Saint-Flour, Expérimentation et démarches d’investigation en mathématiques, www.eduscol.education.fr/forensacte, Octobre 2008. Almouloud, S. A. (2004). A geometria na escola básica: que espaços e formas tem hoje? In Encontro Paulista de Educação Matemática. São Paulo: VII EPEM. Almouloud, S. A, & MELLO, E. G. S. (2000). Iniciação à demonstração aprendendo conceitos geométricos. http://www.ufrrj.br/emanped/paginas/conteudo_producoes/docs_23/iniciacao.pdf Arinos, C. R. M. (2018). Um estudo de potencialidades das representações semióticas na aprendizagem de áreas de triângulos e quadriláteros por alunos do quinto e sexto anos do Ensino Fundamental [Dissertação de Mestrado em Educação Matemática, Universidade Federal de Mato Grosso do Sul]. https://posgraduacao.ufms.br/portal/trabalho-arquivos/download/5448. Artigue, M. (1996). Engenharia didática. In Brun, Jean (Org). Didáctica das Matemáticas. Lisboa: Instituto Jean Piaget. Bellemain, P.M.B, & Lima, P. F. (2010). Coleção explorando o ensino de matemática. Brasília: Ministério da Educação, Secretaria de Educação Básica. Bittar, M.. (2017). Contribuições da teoria das situações didáticas e da engenharia didática para discutir o ensino de matemática. In: R. A. de M. Teles, R. E. de S. R. Borba, & C. E. F. Monteiro. (Orgs.), Investigações em didática da matemática (pp. 101-132).1ed. Recife: UFPE. Brandt, C. F, & Moretti, M. T. (2015). Construção de um desenho metodológico de análise semiótica e cognitiva de problemas de geometria que envolvem figuras. III Fórum de Discussão: Parâmetros Balizadores da Pesquisa em Educação Matemática no Brasil – São Paulo, 17(3), 597-616. Brasil. (2017). Base Nacional Comum Curricular (BNCC). Brasília, DF: MEC. http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518_versaofinal_site.pdf Chevalier A. (1993). Narration de recherche: un nouveau type d’exercice scolaire. Petit x, 33, 1992-1993, 71-79. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de Didactique e de Sciences Cognitives, nº10, 5-53. Duval, R. (2009). Semiose e pensamento humano: registro de representação semiótica e aprendizagens intelectuais (Sémiosis et Pensée Humaine: Registres Sémiotiques et Apprentissages Intellectuels): (fascículo I). Tradução: Lênio F. Ley, & Marisa R. A. da Silveira. Editora da Física, São Paulo, SP. Duval, R. (2011). Ver e ensinar matemática de outra forma, entrar no modo matemático de pensar: os registros de representações semióticas. (Org.): T. M. M. Campos. Tradução: M. A. Dias. Editora PROEM, 1ª Ed. São Paulo. Duval, R. (2012a). Abordagem cognitiva de problemas de Geometria em termos de congruência. Tradução: M. T. Moretti. Revemat, Florianópolis, 7(1), 118-138. Duval, R. (2012b). Registros de representação semiótica e funcionamento cognitivo do pensamento. Tradução: M. T. Moretti. Revemat, Florianópolis, 7(2), 266-297. Flores, C. R, & Moretti, M. T. (2006). As figuras geométricas enquanto suporte para a aprendizagem em geometria: um estudo sobre a heurística e a reconfiguração. Revemat, Florianópolis, 1(1), 5-13. https://periodicos.ufsc.br/index.php/revemat/article/view/12986/12088 Lorenzato A. (1995). Por que não ensinar geometria? A Educação Matemática em Revista, ano III, n.4. Publicação da Sociedade Brasileira de Educação Matemática. Moretti, M. T, & Brandt, C. F. (2015). Construção de um desenho metodológico de análise semiótica e cognitiva de problemas de geometria que envolvem figuras – Construction of a methodological Picture of semiotic and cognitive analysis concerning geometry problems involving figures. Educação Matemática Pesquisa, São Paulo, 17(3), 597-616. Pavanello, R. M. (2004). Por que ensinar/aprender geometria? In VII Encontro Paulista de Educação Matemática. http://www.cascavel.pr.gov.br/arquivos/14062012_curso__32_e_39_-_matematica_-_clecimara_medeiros.pdf Silva, A. D. P. R. da. (2016). Ensino e aprendizagem de área como grandeza geométrica: um estudo por meio dos ambientes papel e lápis, materiais manipulativos e no Apprenti Géomètre 2 no 6º ano do ensino fundamental [Dissertação de Mestrado em Educação Matemática e Tecnológica, Universidade Federal de Pernambuco]. https://repositorio.ufpe.br/bitstream/123456789/17427/1/DISSERTA%c3%87%c3%83O%20Anderson%20Douglas%20Pereira%20Rodrigues%20da%20Silva.pdf Souza, R. N. S. de. (2018). Desconstrução dimensional das formas: gesto intelectual necessário à aprendizagem de geometria [Tese de Doutorado em Educação Científica e Tecnológica, Universidade Federal de Santa Catarina]. https://repositorio.ufsc.br/bitstream/handle/123456789/198939/PECT0369-T.pdf Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics, with special reference to limits and continuity. Educational Studies in Mathematics, Dordrecht, 3(12), 151-169.