Uma caracterização do conhecimento especializado do professor de matemática da educação infantil e anos iniciais em tópicos de medida
Tipo de documento
Autores
Lista de autores
Policastro, Milena, Ribeiro, Miguel
Resumen
En este estudio consideramos las dimensiones matemáticas y pedagógicas del conocimiento del profesor como especializadas, con el objetivo de caracterizar el contenido de este conocimiento, específicamente asociado a los temas de Medidas. Empleando el marco del Mathematics Teacher’s Specialised Knowledge (MTSK), exploramos y describimos el contenido del conocimiento especializado revelado por un grupo de profesores de Educación Primaria en el Brasil mientras abordan una tarea para la formación, en un curso de desarrollo profesional. Los resultados aportan un refinamiento de la categorización del conocimiento docente asociado a los temas (KoT), considerando por separado el detalle del contenido de este conocimento relativo a definiciones, propiedades y fundamentos. Además, el estudio presenta un conjunto de descriptores de conocimiento que resaltan las particularidades y especificidades de este componente del conocimiento docente relacionado con los temas de Medida, permitiendo una especie de mapeo de los elementos estructurales y estructurantes de este conocimiento.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
26
Número
1
Rango páginas (artículo)
101-136
ISSN
16652436
Referencias
Ainswor th, S. (2006). A concept ual f ramework for consider ing lear ning with multiple representations. Learning and Instruction, 16, 183–198. https://doi.org/10.1016/j.learninstruc.2006.03.001Barrett, J. E., Cullen, C., Sarama, J., Clements, D. H., Klanderman, D., Miller, A. L., & Rumsey, C. (2011). Children’s unit concepts in measurement: A teaching experiment spanning grades 2 through 5. ZDM, 43(5), 637-650. https://doi.org/10.1007/s11858-011-0368-8Bar rett, J. E., Sarama, J., Clements, D. H., Cullen, C., McCool, J., Witkowski-Rumsey, C., & Klander man, D. (2012). Evaluating and improving a lear ning t rajector y for linear measurement in elementary grades 2 and 3: A longitudinal study. Mathematical Thinking and Learning, 14, 28–54. https://doi.org/10.1080/10986065.2012.625075Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics, 31(3), 235–268. https://doi.org/10.1007/BF00376322Berka , K. (1983). Mea surement: its concepts, theorie s a nd problem s ( Vol. 72). Spr i nger Netherlands. https://doi.org/10.1007/978-94-009-7828-7 umacaracterizaçãodoconhecimentoespecializadodoprofessor133Relime26 (1), Marzo 2023Boyd, D. J., Grossman, P. L., Lankford, H., Loeb, S., & Wyckoff, J. (2009). Teacher preparation and student achievement. Educational Evaluation and Policy Analysis, 31(4), 416 – 440. https://doi.org/10.3102/0162373709353129Bragg, P., & Outhred, L. (2004). A measure of r ulers—The importance of units in a measure. Inter national Group for the Ps ycholog y of Mathematics Ed ucation, 2, 159 –166. https://files.eric.ed.gov/fulltext/ED489702.pdfCald at to, M. E., Fiorent i n i, D. & Pavanello, R. M. (2018). Uma análise do Projeto de formação profissional de professores privilegiada pelo PROFMAT. Zetetiké, 26, 260–281. https://doi.org/10.20396/zet.v26i2.8651034Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, Á., Ribeiro, M., & Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236–256. https://doi.org/10.1080/14794802.2018.1479981Charalambous, C. Y. (2015). Working at the intersection of teacher knowledge, teacher beliefs, and teaching practice: A multiple-case study. Journal of Mathematics Teacher Education, 18, 427–445. https://doi.org/10.1007/s10857-015-9318-7Charles, R. I. (2005). Big ideas and understandings as the foundation for elementary and middle school Mathematics. Journal of Mathematics Education Leadership, 7(3), 9–24. https://jaymctighe.com/wp-content/uploads/2011/04/MATH-Big-Ideas_NCSM_Spr05v73p9-24.pdfClements, D. H., & Sarama, J. (2007). Early childhood mathematics learning. Em F. K. Lester (Org.), Second handbook of research on mathematics teaching and learning (Vol. 1, pp. 461–555). Information Age Publishing.Clements, D. H., & Sarama, J. (2009). Learning and teaching early Math: The learning trajectory approach. Routledge.Clements, D., & Stephan, M. (2004). Measurement in pre-K to grade 2 mathematics. Em D. Clements, J. Sarama & A.-M. DiBiase (Orgs.), Engaging young children in mathematics: standards for early childhood mathematics education (pp. 299–317).Di Ber nardo, R., Policastro, M., Almeida, A. R. de, Ribeiro, M., Melo, J. M. de, & Aiub, M. (2018). Conhecimento matemático especializado de professores da educação infantil e anos iniciais: Conexões em medidas. Cadernos Cenpec, 8(1), 98–124. http://dx.doi.org/10.18676/cadernoscenpec.v8i1.391Gamboa, G., Badillo, E., Ribeiro, M., Montes, M., & Sanchéz-Matamoros, G. (2020). The role of teachers’ knowledge in the use of learning opportunities triggered by mathematical connections. In S. Zehetmeier, D. Potari, & M. Ribeiro, Professional development and knowledge of Mathematics teachers (1ª ed., pp. 24–43). Routledge.Godino, J. D., Batanero, C., & Roa, R. (2002). Magnitudes y medida. Em Medida de magnitudes y su didáctica para maestros. (p. 611–654). Universidad de Granada, Proyecto de Investigación y Desarrollo del Ministerio de Ciencia y Tecnología.Gómez, P., & Cañadas, M. C. (2016). Dificultades de los profesores de matemáticas en formación en el aprendizaje del análisis fenomenológico. Revista Latinoamericana de Investigación en Matemática Educativa, 19(3), 311–334. https://doi.org/10.12802/relime.13.1933Hiebert, J. (1984). Why do some children have trouble learning measurement concepts? The Arithmetic Teacher, 31(7), 19–24. http://www.jstor.org/stable/41192320Hill, H. C., & Chin, M. (2018). Connections between teachers’ knowledge of students, instruction, and achievement outcomes. American Educational Research Journal, 55(5), 1076 –1112. https://doi.org/10.3102/000283121876961 m. policastro, m. ribeiro134Relime26 (1), Marzo 2023Ho, A., & McMaster, H. (2019). Is’ capacity’volume? Understandings of 11 to 12-year-old children. Em G. Hine, S. Blackley & A. Cooke (eds.), Mathematics Education research: Impacting practice (Proceedings of the 42nd annual conference of the Mathematics Education Research Group of Australasia) (pp. 356–363). MERGA. https://files.eric.ed.gov/fulltext/ED604312.pdfIrwin, K. C., Ell, F. R., & Vistro-Yu, C. P. (2004). Understanding linear measurement: A comparison of Filipino and New Zealand child ren. Mathematics Education Research Journal, 16(2), 3–24. https://doi.org/10.1007/BF03217393Klein, F. (1932). Elementary mathematics from an andvanced standpoint: Arithmetic, algebra, analysis (3a ed., Vol. 1). Macmillan.Lehrer, R., Jaslow, L., & Curtis, C. (2003). Developing an understanding of measurement in the elementary grades. Learning and Teaching Measurement, 1, 100–121.Ma, L. (1999). Knowing and teaching elementary Mathematics: Teacher’s understanding of fundamental Mathematics in China and the United States. Lawrence Erlbaum Associates.Mariotti, M. A., & Fischbein, E. (1997). Defining in classroom activities. Educational Studies in Mathematics, 34(3), 219–248. http://www.jstor.org/stable/3482837Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical str ucture for all. Mathematics Education Research Journal, 21(2), 10–32. https://doi.org/10.1007/BF03217543Ministério da Educação (2018). Base Nacional Comum Curricular. http://basenacionalcomum.mec.gov.br/National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics—National Council of Teacher of Mathematics. Reston, VA.Norton, A., & Boyce, S. (2015). Provoking the construction of a structure for coordinating n+1 levels of units. The Journal of Mathematical Behavior, 40, 211–232. https://doi.org/10.1016/j.jmathb.2015.10.006Organisation for Economic Co-operation and Development (2010). PISA 2009 results: What studentsknow and can do. Student performance in reading, mathematics, and science (Vol. 1). OECD.Pape, S., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40(2), 118–127. https://doi.org/10.1207/s15430421tip4002_6Panorkou, N. (2020). Dynamic measurement reasoning for area and volume. For the Learning of Mathematics, 40(3), 9–13. https://www.jstor.org/stable/27091164Panorkou, N. (2021). Exploring students’ dynamic measurement reasoning about right prisms and cylinders. Cognition and Instruction, 1–35. https://doi.org/10.1080/07370008.2021.1958218Passalaigue, D., & Munier, V. (2015). Schoolteacher trainees’ difficulties about the concepts of attribute and mesaurement. Educational Studies in Mathematics, 89, 307–336. https://doi.org/10.1007/s10649-015-9610-6Policastro, M. S., Almeida, A. R., & Ribeiro, M. (2017). Conhecimento especializado revelado por professores da educação infantil e dos anos iniciais no tema de medida de comprimento e sua estimativa. Revista Espaço Plural, 36(1), 123–154. https://e-revista.unioeste.br/index.php/espacoplural/article/view/19714Policastro, M. S., Almeida, A. R., Ribeiro, M., & Jakobsen, A. (2020). Kindergarten teacher’s knowledge to support a mathematical discussion with pupils on measurement strategies and procedures. In M. Carlsen, I. Erfjord, & P. S. Hundeland. Mathematics education in early years (pp. 263–279). Springer.Policastro, M. S., & Ribeiro, M. (2021). Conhecimento especializado do professor que ensina matemática relativo ao tópico de divisão. Zetetiké, 29, 1–24. https://doi.org/10.20396/zet.v29i00.8661906Ribeiro, M., Almeida, A. R. de, & Mellone, M. (2021). Conceitualizando tarefas formativas para desenvolver as especificidades do conhecimento interpretativo e especializado do professor. Perspectivas da Educação Matemática, 14(35), 1–32. https://doi.org/1046312/pem.v14i35.13263 umacaracterizaçãodoconhecimentoespecializadodoprofessor135Relime26 (1), Marzo 2023Ribeiro, M., Carrillo, J., & Monteiro, R. (2012). Cognições e tipo de comunicação do professor de matemática. Exemplificação de um modelo de análise num episódio dividido. Revista latinoamericana de investigación en matemática educativa, 15(1), 93–121. https://www.redalyc.org/journal/335/33523151005/html/Ribeiro, M., Gibim, G., & Alves, C. (2021). A necessária mudança de foco na formação de professores de e que ensinam matemática: Discussão de tarefas para a for mação e o desenvolvimento do conhecimento interpretativo. Perspectivas da Educação Matemática, 14(34), 1–24. https://doi.org/10.46312/pem.v14i34.12686Ribeiro, M., Jakobsen, A., & Mellone, M. (2018). Secondary prospective teachers’ interpretative knowledge in a measurement situation. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter, Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, p. 35–42). PME.Ribeiro, M., & Policastro, M. (2021). As medidas e as especif icidades do conhecimento do professor para que os alunos aprendam Matemática com significado (1.ª ed., vol. 2). CRV.Sarama, J., Clements, D. H., Barret, J., Van Dine, D. W., & MacDonel, J. S. (2011). Evaluation of a learning trajectory for length in the early years. ZDM Mathematics Education, 43, 667–680. https://doi.org/10.1007/s11858-011-0326-5Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. R. (2017). What makes Mathematics teacher knowledge specialized? Offering alternative views. International Journalof Science and Mathematics Education, 1–20. https://doi.org/10.1007/s10763-017-9859-6Schmidt, W., Houang, R., & Cogan, L. (2002). A coherent curriculum. American Educator, Summer, 1–18. https://www.math.mun.ca/~hsgaskill/refs/curriculum.pdfSmith, J. P., Van den Heuvel-Panhuizen, M., & Teppo, A. R. (2011). Learning, teaching, and using measurement: Introduction to the issue. ZDMMathematics Education, 43(5), 617–620. https://doi.org/10.1007/s11858-011-0369-7Stake, R. E. (1995). The art of case study research. (1.ª ed.). Sage Publications.Steffe, L. P. (2003). Fractional commensurate, composition, and adding schemes: Lear ning trajectories of Jason and Laura: Grade 5. The Journal of Mathematical Behavior, 22(3), 237–295. https://doi.org/10.1016/S0732-3123(03)00022-1Stephan, M., & Clements, D. H. (2003). Linear and area measurement in prekindergarten to grade 2. Em D. H. Clements & G. Bright (eds.), Learning and teaching measurement: 2003 yearbook (pp. 3–16). National Council of Teachers of Mathematics.Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. Sage Publications.Subramaniam, K. (2014). Prospective secondary mathematics teachers’ pedagogical knowledge for teaching the estimation of length measurements. Journal of Mathematics Teacher Education, 17, 177–198. https://doi.org/10.1007/s10857-013-9255-2Szilagyi, J., Clements, D. H., & Sarama, J. (2013). young children’s understandings of length measurement: Evaluating a lear ning t rajector y. Journal for Research in Mathematics Education., 44(3), 581–620. https://doi.org/10.5951/jresematheduc.44.3.0581Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics wiht particular reference to limits and continuity. Educational Studes in Mathematics, 12, 151–169. https://doi.org/10.1007/BF00305619Vale, C., McAndrew, A., & Krishnan, S. (2010). Connecting with the horizon: Developing teachers’appreciation of mathematical structure. Journal of Mathematics Teacher Education, 14, 193–212. https://doi.org/10.1007/s10857-010-9162-8Van den Heuvel-Pan huizen, M., & Elia, I. (2011). Kindergar t ners’ perfor mance in length measurement and the effect of picture book reading. ZDM Mathematics Education, 43(5), 621–635. https://doi.org/10.1007/s11858-011-0331-8 m. policastro, m. ribeiro136Relime26 (1), Marzo 2023Venturi, G. (2014). Foundation of Mathematics between theory and practice. Philosophia Scientiæ, 18(1), 45–80. https://doi.org/10.4000/philosophiascientiae.912Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. Em D. Tall (ed.), Advanced mathematical thinking (pp. 65–81). Springer.Vysotskaya, E., Lobanova, A., Rekhtman, I., & Yanishevskaya, M. (2020). The challenge of proportion: Does it require rethinking of the measurement paradigm? Educational Studies in Mathematics, 106, 429-446. https://doi.org/10.1007/s10649-020-09987-8Weber, K. (2002). Beyond proving and explaining: Proofs that justify the use of definitions and axiomatic structures and proofs that illustrate technique. For the Learning of Mathematics, 22(3), 14–17. https://www.jstor.org/stable/40248396Zakaryan, D., & Ribeiro, M. (2018). Mathematics teachers’ specialized knowledge: A secondary teacher’s knowledge of rational numbers. Research in Mathematics Education, 21(3), 1–19. https://doi.org/10.1080/14794802.2018.1525422Zaslavsky, O., & Shir, K. (2005). Students’ conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36(4), 317–346. https://www.jstor.org/stable/30035043Zazkis, R., & Leikin, R. (2008). Exemplifying definitions: A case of a square. Educational Studies in Mathematics, 69(2), 131–148. https://doi.org/10.1007/s10649-008-9131-7
Proyectos
Cantidad de páginas
36