Una comparación entre las demostraciones de Pedro Nunes y Al-Khwārizmī de los algoritmos de las formas canónicas de la ecuación de segundo grado
Tipo de documento
Autores
Lista de autores
Infante, Francisco y Puig, Luis
Resumen
Este trabajo se enmarca dentro de un estudio sobre la historia de las formas de demostración en álgebra146. Desde el comienzo del álgebra árabe medieval ya se hace un esfuerzo explícito por dar una justificación para las soluciones de las formas canónicas, más allá de sólo mostrar el algoritmo de solución. En este sentido la manera en que al-Khwārizmī justifica esos algoritmos en su Kitâb aljabr w'al-muqâbala abre el camino a todo un proceso que continuarán otras figuras de la ciencia árabe y que luego tendrá su repercusión en el álgebra de la Europa Medieval, y en particular en Pedro Nunes.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Evolución histórica de conceptos | Procesos de justificación
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Título libro actas
Actas do I Congresso Ibero-Americano de História da Educação Matemática
Editores (actas)
Lista de editores (actas)
Matos, José Manuel y Saraiva, Manuel Joaquim
Editorial (actas)
Faculdade de Ciência e Tecnologia da Universidade Nova de Lisboa
Lugar (actas)
Rango páginas (actas)
301-319
ISBN (actas)
Referencias
Abdeljaouad, M. (2002). La demostración en el álgebra de los árabes. En http://wwwdidactique.imag.fr/preuve/Newsletter/02Hiver/02hiverThemeES.html Cajori, F. (1993). A History of Mathematical Notations. New York: Dover. Høyrup, J. (1994). The Antecedents of Algebra. Filosofi og videnskabsteori på Roskilde Universitetcenter. 3. Række: Preprint og Reprints, 1994 nr. 1. Høyrup, J. (1996). The Four Sides And The Area. Oblique Light on the Prehistory of Algebra. In R. Calinger (Ed.), Vita mathematica. Historical Research and Integration with Teaching (pp. 45-65). Washington, DC: Mathematical Association of America. Høyrup, J. (1998). “Oxford” and “Cremona”: on the relation between two versions of alKhwarizmi’s algebra. In Association Algérienne d’Histoire des Mathématiques. Actes du 3me Colloque Maghrébin sur l’Histoire des Mathématiques Arabes (vol. 2. pp. 159–178), Tipaza (Alger, Algérie), 1-3 Décembre 1990. Høyrup, J. (2002a). Lengths, Widths, Surfaces. A Portrait of Old Babylonian Algebra and Its Kin. New York: Springer. Hughes, B. (1986). Gerard of Cremona’s Translation of al-Khwârizmî’s al-jabr: A Critical Edition. Mediaeval Studies 48, pp. 211-263. Hughes, B. (1989). Robert of Chester’s Translation of al-Khwārizmī’s al-jabr: A New Critical Edition, Boethius, Band XIV. Stuttgart: Franz Steiner Verlag. Karpinski, L. (1915). Robert of Chester’s Latin Translation of The Algebra of Al-Khowarizmi. New York: The MacMillan Company, University of Michigan Studies [electronic version]. Infante, J. F. (2010). Un estudio de las demostraciones de los algoritmos de solución de las formas canónicas de las ecuaciones de segundo grado en al-Khwārizmī, Abū Kāmil, Marc Aurel, Juan Pérez de Moya y Pedro Nunes. Trabajo Fin de Máster del Máster de Investigación en Didácticas Específicas. Universitat de València. Infante, J. F. y Puig, L. (2009). Demostraciones de los algoritmos de las ecuaciones de segundo grado en el Kitâb Al-Jabr W'al-Muqâbala de Al-Khwârizmî. Comunicación presentada en el grupo de trabajo “Historia de las Matemáticas y de la Educación Matemática” en el Decimotercer Simposio de la Sociedad Española de Investigación en Educación Matemática. Sociedad Española de Investigación en Educación Matemática. Santander, 10 al 12 de septiembre de 2009. Masharrafa, A. M. y Ahmad, M. M. (Eds.) (1939). Al-Khwārizmī, Muhammad ibn Mūsa. Kitāb al-mukhtasar fī hisāb al-jabr wa’l-muqābala. Cairo: al-Qahirah. Reprinted 1968. Nunes P. (1946). Obras Vol. VI. Libro de Algebra en arithmetica y geometría. Lisboa: Impresa Nacional de Lisboa Academia das Ciências de Lisboa. Nuñez P. (1567a). Libro de Algebra en arithmetica y geometria. Compuesto por el Doctor Pedro Nuñez, Cosmografo Mayor del Rey de Portugal, y Cathedratico Iubilado en la Cathedra de Mathematicas en la Vniversidad de Coymbra. Anvers: En la casa de los herederos d’Arnoldo Birckman a la Gallina gorda. Nuñez P. (1567b). Libro de Algebra en arithmetica y geometria. Compuesto por el Doctor Pedro Nuñez, Cosmografo Mayor del Rey de Portugal, y Cathedratico Iubilado en la Cathedra de Mathematicas en la Vniversidad de Coymbra. Anvers: En la casa de la biuda y herederos de Iuan Stelsio. Puertas, M. (Ed.) (1991). Elementos de Euclides, v. 1, 2 Madrid: Gredos. Puig, L. (1998). Componentes de una historia del álgebra. El texto de al-Khwarizmi restaurado. En F. Hitt (Ed.) Investigaciones en Matemática Educativa II (pp. 109-131). México, DF: Grupo Editorial Iberoamérica. Puig, L. (2009b). Naïve, geometric and algebraic proof in ancient and modern times. Talk to the meeting Semiotic Approaches to Mathematics, the History of Mathematics, and Mathematics Education (SemMHistEd) – 3rd Meeting. Aristotle University of Thessaloniki, July 16-17, 2009. Puig, L. (in press). Researching the History of Algebraic Ideas from an Educational Point of View. In. V. Katz & C. Tzanakis (Eds.) Recent Developments on Introducing a Historical Dimension in Mathematics Education. The Mathematical Association of America. Rashed, R. (Ed.) (2007). Al-Khwārizmī. Le commencement de l’algèbre. Paris: Librairie Scientifique et Technique Albert Blanchard. Rosen, F. (1831). The algebra of Mohammed Ben Musa. London: Oriental Translation Fund.