Una extensión del producto vectorial al espacio Rn con n mayor o igual a cuatro
Tipo de documento
Autores
Lista de autores
Arroyo, Víctor
Resumen
Es notorio que el manejo del Producto Vectorial o Producto Cruz y todas sus aplicaciones que se presentan en los diferentes textos, se limitan al espacio R3 La Presente obra “UNA EXTENSIÓN DEL PRODUCTO VECTORIAL AL ESPACIO Rn CON n MAYOR o IGUAL A CUATRO” nos presenta una teoría generalizada o extendida del Producto Vectorial en R4 , R5 , ... , Rn, definiéndose en cada uno de estos espacios y comprobándose que las propiedades que se cumplen en R3 también se cumplen en Rn. Esta teoría puede verse como un aporte significativo a la geometría, al cálculo y a la física, enriqueciendo los conceptos de área y volumen, campo magnético y movimiento planetario en Rn, entre otros. La mayor dificultad que puede presentar esta teoría para su comprensión total, como las demás teorías relacionadas con el cálculo y el álgebra vectorial, es la visualización geométrica de aquellos espacios con más de tres (3) dimensiones; no obstante, el presente trabajo manifiesta que es posible desarrollar el Producto Vectorial con dos o más vectores pertenecientes a Rn, y hacernos una idea abstracta de dichos espacios. En forma indirecta, esta obra hace una invitación a seguir estudiando y profundizando a cerca del producto cruz y sus aplicaciones, con el fin de que además de enriquecer nuestros conocimientos, y que estos nos permitan relacionar de una mejor manera el mundo exterior, generen cambios en el desarrollo intelectual del hombre y en su formación matemática.
Fecha
2003
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Geometría vectorial | Gráfica | Simbólica | Usos o significados
Enfoque
Idioma
Revisado por pares
Formato del archivo
Usuario
Tipo de tesis
Institución (tesis)
Proyectos
Cantidad de páginas
51