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The GSP as a technical and psychological-symbolic tool: 
The case of a lateral entry teacher

Adalira Sáenz-Ludlow1

Anna Athanasopoulou2

Este es un estudio preliminar a un experimento de enseñanza que fue lle-
vado a cabo durante un semestre académico. Los participantes fueron un 
estudiante de educación matemática, una aspirante a obtener su licencia 
para enseñar en la escuela media a través de su práctica de enseñanza y 
cursos universitarios, y dos maestras, ya tituladas y enseñando en la escue-
la secundaria. El propósito del experimento fue tratar de entender cómo 
maestros, que poseen cierto conocimiento de objetos geométricos, utilizan 
el programa Geometer’s Sketchpad (GSP) para expandir y consolidar dicho 
conocimiento. El estudio utilizó tareas semi-estructuradas especialmente 
diseñadas para el GSP con la intención de motivar la triada comunicati-
va entre el profesor, el GSP y el investigador, además de dar al profesor 
la libertad de explorar situaciones geométricas para generar conjeturas, 
investigarlas y luego probarlas. En este artículo analizamos cómo la pro-
fesora aspirante a obtener su licencia para enseñar (aquí denominada con 
el pseudónimo de Susan) usa el GSP para resolver una tarea cuyo objetivo 
fue el de investigar varias propiedades de los trapecios isósceles. El análisis 
muestra que Susan usó el GSP no solamente como una herramienta téc-
nica, sino que la constituyó en una herramienta simbólica en el proceso 
de conceptualizar algunas de las propiedades de trapecios isósceles y la 
demostración geométrica de ellas.

One academic semester long pilot teaching-experiment on the learning of 
geometry was conducted with one pre-service teacher, one lateral entry 
teacher, and two in-service teachers. The purpose of the pilot teaching-
experiment was to understand how learners, who already have some 
knowledge of geometric objects, are able to reorganize and broaden their 
knowledge when using the Geometer’s Sketchpad (GSP). The guiding 
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principle of the teaching-experiment was to use semi-structured tasks es-
pecially designed for the GSP to foster the three-way-interaction among 
the student-teacher, the GSP, and the teacher-interviewer. The objective of 
each task was to allow each participating student-teacher the freedom to 
explore geometric situations, to make conjectures, and to prove them. In 
this article, we analyze how the lateral entry teacher, here with the pseu-
donym of Susan, solved a task which purpose was to investigate isosceles 
trapezoids and some of the properties. The analysis indicates that Susan 
used the GSP as a technical tool but also constituted it into a psychologi-
cal-symbolic tool in the process of conceptualizing and proving some of 
the properties of isosceles trapezoids.

The GSP as a mediational tool

Several research studies (among others Mariotti, 2000; Jiang, 2002; Chris-
tou, Mousoulides, Pittalis, and Pitta-Pantazi, 2004; De Villiers, 2004) have 
demonstrated that dynamic geometry environments mediate between the 
learners’ physical actions and their conceptualizations. Now, the first ques-
tion in front of us is if the GSP is per se a mechanical tool mediating and 
guiding the thinking of the user or/and if the user comes to act on the tool 
according to her/his own conceptualizations. The other question is if the 
GSP changes the nature of the interaction between the teacher and the 
students making it triadic and more meaningful. The analysis presented 
here indicates that the GSP fosters a triadic communication among the 
learner, the tool and the teacher-interviewer, and that such communication 
greatly enhances the learner’s conceptualization of geometric objects. We 
first argue, from a theoretical perspective, that the GSP, like any other dy-
namic geometry environment, is not only a technical tool but it is also a 
symbolic or psychological tool. Through the analysis, then, we document 
that with the aid of the teacher-interviewer, Susan transformed this tool into 
a psychological-symbolic tool to serve her conceptualizing goals, and that 
in the process, her level of deduction evolved from incomplete and tacit to 
more explicit and better argued.

The concepts of tool and tool mediation are central to the vygotskian pers-
pective on cognitive development. Vygotsky considers two kinds of tools: 
technical (or material) tools and psychological (or symbolic) tools. Techni-
cal tools are directed to produce a set of changes on the object(s) they are 
applied to. In contrast, psychological tools direct the mind and behavior of 
the individuals (Kozulin, 1990). What kind of tool could be a dynamic geo-
metry environment like the GSP? The GSP –or any other dynamic geometry 
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environment– can be considered as an amalgamation of technical and psy-
chological tools, because it intertwines kinesthetic, visual, and conceptual 
activity and mediates the transformation of physical activity into conceptual 
activity. That is, any dynamic geometry environment has a symbolic media-
tory purpose because it facilitates, for the learner, the emergence of con-
ceptual geometric activity from his/her kinesthetic-visual activity. In other 
words, the GSP is a psychological-symbolic tool that induces the learner 
both to observe the variants and invariants of successive drawings as they 
are generated in the dragging process and to gain insight into the generali-
zed figure, which is nothing else than the class of all drawings with the same 
structural properties regardless of their size and location in space (Sáenz-
Ludlow and Athanasopoulou, 2008). 

Vygostky points out that the principle from “action to thought” should be 
applied not only to the development of intelligence, but also to the functio-
ning of intelligence (Wertsch, 1985). This principle implies, in our particular 
case, the use of the GSP, that there is a considerable distance between lear-
ning how to operate the tool to make drawings on the screen and becoming 
aware of the geometric structure of those drawings (i.e., becoming aware of 
the geometric figure). Drawing from Plato, Laborde (1993) made the diffe-
rentiation between drawing and figure; drawing refers to the material enti-
ties on the screen (i.e., drawings as products of dynamic geometry environ-
ments) and figure refers to the theoretical object. Jones (2000) retakes this 
differentiation and explains that in terms of dynamic geometry packages, a 
drawing can be a juxtaposition of geometrical objects resembling closely 
the intended construction (something that can be made to “look right”). 
Although, drawings may look like an intended figure they could lack the 
right relationships among the constitutive elements. This can also be resta-
ted by saying that a figure captures the relationships between its constituent 
geometric objects in such a way that any drawing of the figure is invariant 
when any basic geometric object used in its construction is dragged. In 
other words, when the drawing passes the dragging test it becomes a con-
crete instantiation of the figure as a concept. 

Something similar happens between oral and written language. A meaning 
could be conveyed orally, even when syntactical elements of the language 
are not used rigorously because all kind of gestures and voice modulation 
could also become meditational means. However, in written language, the 
same meaning cannot be conveyed if the structural elements of the langua-
ge are not rigorously used. Thus, in an analogous manner, we could say that 
meanings in written natural language, to be conveyed properly, have to pass 
the writing test. 
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Hence, constructing a drawing (i.e., an icon of a geometric figure) using 
the capabilities of the GSP does not necessarily entail the understanding 
of the structural properties of the geometric elements of the figure and the 
relationships of the actual figure with other geometric figures. However, cer-
tain drawings in the GSP could be semi-structured in the sense that, when 
dragged induce not only the generalization of a particular geometric figure, 
but also the generalization of several geometric figures. An example of a 
semi-structured drawing is given in Figure 1 (see this figure in the section 
about methodology) because, when dragged, it produces not only drawings 
of trapezoids but also drawings of different quadrilaterals. These semi-struc-
tured drawings can also be used as instructional tasks to determine which 
relationships among certain elements of these drawings would produce 
drawings of only one particular geometric figure. 

Thus, conceptualizing a figure is, in essence, a process of de-contextuali-
zation made, possible by the dragging capability of dynamic geometric en-
vironments, among those the GSP. The passage from action to concept or in 
our particular case, the passage from drawing to generalized figure, is equi-
valent to the passage from the concrete and particular to the general and 
abstract. This passage is nothing else than an instance of the vygotskian prin-
ciple of de-contextualization through mediational means (Werstch, 1985). 

De-contextualization is a process whereby the meaning of signs (in this 
case drawings as iconic signs) becomes less and less dependent on spatio-
temporal contexts (size and space location of a sequence of drawings) and 
more and more dependent on the structural properties of the constituent 
elements of those drawings (i.e., the conceptualization of a generalized figu-
re as a more structured sign or symbol, as Peirce calls them).

Dragging actions in the GSP generate a sequence of geometric drawings 
that facilitate the emergence of conjectures and insights into the forma-
tion of geometric arguments to accept or reject those conjectures. Thus, the 
GSP as a technical and psycholological-symbolic tool facilitates not only the 
passage from iconic drawings to geometric figures (as symbolic geometric 
objects), but it also mediates the emergence of mental processes to cons-
truct geometric arguments. In the process, the GSP facilitates a cognitive 
continuity that goes from the perception of iconic drawings to the concep-
tualization of symbolic figures and to the emergence of geometric argu-
ments. This continuity is accompanied with emerging processes of abduc-
tion, induction, and deduction. The passage from perceiving-and-seeing to 
conjecturing-and-proving is essential to the teaching-learning of geometry. 
The GSP mediates the development of the geometric reasoning of the lear-
ners, which is one of the main goals for the teaching of geometry espoused 
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by the National Council of Teachers of Mathematics (NCTM Principles and 
Standards, 2000). 

In addition, the GSP, as a technical and psycholological-symbolic tool, 
not only mediates between the learner and the computer, but it also me-
diates the communication between the teacher and the learner. The three-
way interaction between learner, computer and teacher, allows the sharing 
of interpretations and the discussion of ideas and it provides the teacher 
with opportunities to challenge students’ interpretations or misinterpreta-
tions (usually called errors). Errors or misinterpretations are part and parcel 
of processes of learning. Leont’ev and Brousseau call our attention on this 
issue. They consider errors and interactions with others as essential in the 
continuity of sense-making in the learning process. 

“Man learns from errors and still more from the successes of other people” 
(Leonte’ev, 1970, p. 123). “Errors are not erratic or unexpected; the error is 
a component of the meaning of the acquired piece of knowledge” (Brous-
seau, 1997, p. 82). 

In fact, errors and interactions with others are stopping-to-reflect opportu-
nities in the refining process of knowing. The GSP, as a mediating technical 
and psycholological-symbolic tool, re-defines the channels for discussion 
and communication between teacher, learners and computer, and it pro-
vides opportunities for the students to modify their interpretations and mi-
sinterpretations of geometric objects. In this interaction, learners come to 
refine their geometric knowledge and to become aware of their own mental 
actions. The re-definition of the channels of communication also implies a 
shift from the teacher’s monologue to the student-teacher dialogue and the 
concomitant shift of authority from “domination and obedience to negotia-
tion and consent” (Amit and Fried, 2005, p. 164). This new way of looking at 
the student-teacher communication also shifts the conceptual agency of the 
teacher to the conceptual agency of the student by transforming students’ 
participation on their own learning from passive to active. That is, the GSP 
makes possible a teaching-learning environment that is student-centered. 
Students’ active participation on their own learning, contributes to trans-
form their geometric reasoning into a habit of mind, and like any habit, it 
must be developed through a consistent way of reasoning in many contexts 
and from the earliest grades of their mathematical schooling. This is also 
another goal for the teaching of geometry espoused by the National Council 
of Teachers of Mathematics (Principles and Standards of School Mathema-
tics, NCTM, 2000).

In summary, the GSP could be used as an effective technical and psycho-
lological-symbolic tool with the potential to promote student-centered tea-
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ching-learning styles focused on the development of independent learners 
that come to refine their understanding and to trust the authority of their 
own reasoning.

Literature review

Several research studies have concentrated on elementary and secondary 
school pre-service teachers to give them the opportunity to experiment by 
themselves ways of learning geometry using dynamic environments. Among 
these studies are those conducted by Mariotti, 2000; Jiang, 2002; Christou, 
Mousoulides, Pittalis and Pitta-Pantazi, 2004; and De Villiers, 2004. Other 
studies have concentrated on the geometric progress of individual students. 
Among these studies is that of Choi-Koh (1999).

Christou, Mousoulides, Pittalis and Pitta-Pantazi (2004) did a study with 
three pre-service primary school teachers. They used the GSP as a mediatory 
tool for the exploration of plane geometric figures. In this study, pre-service 
teachers explored, recognized and analyzed the properties of kites and then 
used these properties to construct this figure in different ways. Two of the 
three teachers used the property of perpendicularity of its diagonals and the 
third used the property of two pairs of adjacent equal sides. The researches 
extended the task to investigate the kind of quadrilaterals formed by con-
necting the midpoints of the adjacent sides of kites. The pre-service teachers 
conjectured that the mid-point quadrilateral was a rectangle and also were 
able to prove it. This study indicated that both, the GSP and appropriate 
guiding questions on the part of the teacher, can propel students’ concep-
tualizations of conjectures and their proofs. 

Jiang (2002) interviewed two secondary school mathematics pre-service 
teachers using the GSP environment and emphasizing the making of con-
jectures and the process of proving or disproving them. These teachers came 
to the realization that their students could also have a conceptual unders-
tanding on geometry, as they did, if they were given the opportunity to use 
this tool to explore geometric situations.

De Villiers (2004) also conducted a study with pre-service secondary-
school mathematics teachers and used the GSP as a mediatory tool. In his 
study, pre-service teachers started with different definitions of isosceles tra-
pezoids, proved their properties and constructed them in different ways, ac-
cording to the definition. Pre-service teachers compared different construc-
tions and manifested their preference for the axis-of-symmetry definition. 
Then, they were also asked to define isosceles trapezoids and explore their 



173

C
A

PÍ
TU

LO
 S

EX
TO

properties. Because of the dragging capability of the GSP, students were 
able to construct generalizations as well as specializations dragging vertices 
or line segments. The researcher indicated both, the use of the GSP and the 
use of structured activities, at corresponding Van Hiele levels, provide va-
luable contexts for discoveries, explanations, justifications and proofs that 
could be incorporated in the high-school geometry curriculum.

Choi-Koh (1999) investigated the development of a secondary-school stu-
dent as he passed from the intuitive to the deduction Van Hiele levels using 
the GSP as a mediatory tool. This researcher indicated that by means of the 
GSP environment and open-ended questions on the part of the teacher, the 
student passed from intuitive level to the analytical level, then to the induc-
tive level, to finally achieve the deductive level. According to the report, 
the student used the GSP as a tool not only for verification purposes, but 
also for the construction of counterexamples. The report also indicated that 
the geometry software provided an interactive environment that mediated 
and shaped the student’s constructions. Such an environment also fostered 
the student’s ability to make conjectures and the improvement of his geo-
metric thinking as he tried to solve open-ended problems prepared by the 
researcher. 

The research studies mentioned above indicate the value of the GSP as 
instructional tool to establish a communication between the student and 
the teacher. However, for this interaction to be effective in the teaching-
learning process of geometry, it is also necessary both, the guiding role of 
the teacher and well structured geometric tasks, appropriate to this dynamic 
environment and to the geometric level of the students. Mariotti (2000), for 
example, emphasizes the role of the teacher as fundamental to enhance the 
mathematical discussion to guide the evolution of student’s construction of 
geometric meanings in a dynamic environment. Choi-Koh (1999) emphasi-
zes the importance of the appropriateness of the tasks for the GSP environ-
ment to link both, students’ intuitions and their ability to analyze geometric 
objects in order to generate conjectures and to construct geometric proofs.

Methodology

Teaching-experiment 

The teaching-experiment methodology is based on long-term interaction 
between teacher and students to follow their conceptual evolution and cog-
nitive manifestations (Steffe, 1980; Cobb and Steffe, 1983). This pilot tea-
ching-experiment focused on teachers’ conceptions of geometric objects, 
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the construction of those objects using the GSP, their ability to make con-
jectures and to prove them. Two researchers conducted the experiment; one 
was the teacher-interviewer, and the other, the active participant observer. 
We followed two guiding principles: (a) the use of semi-structured tasks for 
the GSP environment; and (b) the indirect but guiding role of the teacher-in-
terviewer by means of open-ended questions that gave learners the freedom 
to explore, to make conjectures, to investigate them and to prove them. All 
the tasks for the pilot study were prepared before hand and some of them 
were re-designed according to the geometric needs of the students. 

Given the central role that congruence and similarity concepts play in 
euclidean geometry, special attention was paid to congruence and similarity 
of triangles at the beginning of the study, to make sure that the participating 
teachers understood the criteria for congruence and similarity and their im-
plications.

This pilot teaching-experiment lasted one academic semester with one 
pre-service middle school teacher, one lateral entry middle school teacher 
and two in-service high school teachers. Twenty one (21) one-to-one inter-
views were conducted; teachers were interviewed on a weekly basis and 
each interview lasted, on the average, 90 minutes. Here we analyze one 
interview with the middle school lateral entry teacher (with the pseudonym 
of Susan) that lasted 120 minutes.

A semi-structured task

In the GSP dynamic environment, the given task presented the semi-struc-
tured drawing ABCD with ABIICD (Figure 1).

Figure 1. Semi-structured drawing ABCD with ABIIC

Dragging vertices or sides of this drawing leads to the formation of drawings 
of different quadrilaterals. The purposes of the task were (a) to drag vertices 
and sides of the given drawing to observe which kinds of quadrilaterals 
could be observed; (b) to investigate how the given drawing could be trans-
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formed into an isosceles trapezoid; (c) to investigate and prove properties 
of isosceles trapezoids; and (d) to investigate how the knowledge of these 
properties could be useful in the transformation of the given drawing into 
an isosceles trapezoid. Here we analyze only the part of the interview that 
is relevant to isosceles trapezoids.

Analysis

Initial state of Susan’s knowledge about isosceles trapezoids 

Susan recognized the obvious triangles OAB and OCD in Figure 1, and 
also a trapezoid if one were to connect the segments AC and BD. She knew 
that a quadrilateral with only one pair of parallel sides was a trapezoid. The 
following question asked was about what types of trapezoids she knew, and 
she answered “isosceles trapezoids”. She also took as well known facts that 
isosceles trapezoids have the pair of non-parallel sides congruent, its dia-
gonals congruent and the two pairs of base angles congruent, and she used 
these facts, as if they were definitions. She did not differentiate between 
the definition and the properties of isosceles trapezoids. It is also important 
to note that Susan knew how to use the measuring capability of the GSP 
and she had the tendency to give justifications congruence of segments by 
measuring their lengths and congruence of triangles by measuring their 
areas. She seemed to have not used the GSP for purposes of exploration. It 
could be said that Susan was at level 1 of the Van Hiele model (i.e., level of 
analysis). At this level, the learner is able to recognize some properties of 
the figure, although the interrelationship between the definition of a figure 
and its properties appears not to be there and neither is the conceptual 
organization of those properties to draw conclusions about similarities and 
differences of a given figure with respect to other geometric figures. 

Constructing isosceles trapezoids from a semi-structured drawing 

The teacher-interviewer probed Susan’s knowledge about isosceles tra-
pezoids and challenged her to construct an isosceles trapezoid using the 
given drawing (Figure 1). Her very first reaction was to measure the non-
parallel sides AC and BD but immediately she switched into the equality 
of diagonals and measured them. Although, Susan described at once two 
properties of isosceles trapezoids (congruent diagonals and congruent non-
parallel sides), she was not able to apply any of them to transform the gi-
ven trapezoid into one that were isosceles. In the beginning, she dragged 
different vertices and segments unsuccessfully. She soon abandoned this 
strategy and decided to construct an isosceles trapezoid from scratch, using 



176

Th
e 

ca
se

 o
f a

 la
te

ra
l e

nt
ry

 te
ac

he
r

what she called the “mirror method”. She said that she used this method 
for constructing isosceles trapezoids in a project she did at the school. She 
took some moments to bring the construction to memory.

Figure 2. Two line segments with a common vertex, PM and RM

Then, Susan constructed her own figure. She started from two line seg-
ments with a common vertex, PR and RM (Figure 2). Then she constructed a 
perpendicular line on RM at point M and using the GSP she “mirrored” these 
two segments over this perpendicular line. She completed the construction 
of the isosceles trapezoid joining points P and S (Figure 2). She continued 
constructing the diagonals and she measured them. Tabulating the measures 
on the screen, she dragged the vertices of her isosceles trapezoid to verify 
that the diagonals were always equal. This, of course, was the case because 
she had constructed a robust figure. However, she had no confidence in the 
properties of the figure although she made the assertion since the beginning 
that the diagonals of isosceles trapezoid were congruent. Not being able to 
construct isosceles trapezoid using what she knew about them, indicates 
that her knowledge was based on rote memory. Skemp’s (1987) would des-
cribe this knowledge as instrumental but not relational. This instrumental 
knowledge led us to hypothesize that she was at the level of analysis (level 
1) of the Van Hiele model. 

Regardless of being able to use the “mirror method” to draw isosceles 
trapezoids, Susan was not aware of the geometric principals behind this 
construction (i.e., the bases of isosceles trapezoids have a common perpen-
dicular bisector and this perpendicular bisector could be used as a mirror 
or axis of symmetry). If she had known this property and its meaning, she 
could have constructed the “mirror” she needed by constructing the com-
mon perpendicular bisector to the two bases of the trapezoid into Figure 1 
and transform it into an isosceles trapezoid. This illustrates that manipula-
ting drawings on the screen does not necessarily mean that the properties 
of a geometric figure are understood as the essential characteristics of that 
figure. It also illustrates that the GSP can be used only as a technical tool 
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rather than as a psychological-symbolic tool to put the drawings under the 
conceptualizing lens of the user.

Proving that when trapezoids are isosceles, they have congruent  
diagonals 

When Susan verified the congruence of the diagonals by dragging any ver-
tex of the isosceles trapezoid she constructed (Figure 2), the teacher-inter-
viewer pushed her to jump into the following step to prove the congruence 
of them. That is, Susan had to prove that “if a quadrilateral is an isosceles 
trapezoid, then its diagonals are congruent”. She expressed her thoughts as 
follows.

45. Susan: Ok and I am going to color the triangles PTR and STQ just 
to color them. So these two triangles –triangles PTR and STQ– are 
congruent [she gives no justification]3. Ok so that means again I know 
that the length of RT would be equal to the length of TQ and the dia-
gonal RS can be RT plus TS, and the diagonal PQ can be PT plus TQ. 
RT is equal to TQ or the length of RT equal to the length of TQ, and the 
length of ST is equal to PT. So, that would make those two diagonals 
[RS and TQ] congruent (Figure 3). 

Figure 3. Those two diagonals [RS and TQ] congruent

Obviously, Susan did not prove the congruence of the triangles she focused 
on. In reality, there were not enough elements to argue the congruence. In 
addition, she did not use the fact that the trapezoid was isosceles. Probably, 
the assertion that triangles PTR and STQ were congruent was based on her 
assumption, that when the trapezoid is isosceles, the point of intersection of 
the diagonals (point T) lies on the perpendicular bisector of the two bases. In 
order to use this assumption in the proof, it is necessary to construct a geo-
metric argument to prove that this is the case in isosceles trapezoids. It also 

3 Brackets are used for clarification.
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seems interesting that although the question was to prove that the diagonals 
were congruent, Susan concentrated on the parts of the diagonals determi-
ned by their point of intersection T. When she was asked for the justification 
of the congruence of the triangles PTR and STQ, she proposed to measure 
their areas without being aware that two triangles could have the same area 
and still not be congruent. This is another instance in which Susan’s persis-
tence on measuring as a way of “proving” indicates her use of the GSP only 
as a technical tool rather than as a psychological-symbolic tool to achieve 
particular geometric objectives. 

Figure 4

Then the teacher-interviewer requested a proof in which measurement 
were not involved. Susan continued the analysis of the figure by considering 
point M as the midpoint of RQ (the midpoint created by the mirror) and ma-
king TM the perpendicular bisector of RQ in order to conclude that TQ was 
congruent to TR. When the teacher-interviewer asked her how she knew 
that point T (the intersection of diagonals) was on the perpendicular bisec-
tor, Susan was confused. For this reason, the teacher-interviewer decided to 
ask her how many triangles she could see in her drawing and to show them. 
Susan needed to understand that she had to compare the triangles PRQ 
and SQR because the sides PQ and SR were the diagonals of the isosceles 
trapezoid. 

88. Susan: Ok, so I am looking at PRQ and SRQ… it’s cool. Oh! I get 
it; the light bulb just went on in my head. All right, so ∆PRQ and ∆SQR 
are congruent by side-angle-side (SAS). PR=SQ. ∠PRQ = ∠SQR, and 
RQ=RQ. Thus, the sides PQ and SR are congruent.

We should observe that Susan did not explicitly argued that PR=SQ be-
cause they are the non-parallel sides of a trapezoid that was isosceles. She 
asserted that ∠PRQ = ∠SQR because she also took as a definition of isos-
celes trapezoids those trapezoids which simultaneously have base angles 
congruent and non-parallel sides congruent. This was probably an inference 
of her mirror-construction of isosceles trapezoids. She did not specify either 
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that the sides PQ and SR, in this case also diagonals of the trapezoid, were 
congruent as an implication of the congruence of the triangles. In other 
words, her proof was encrypted and incomplete. This may be due to her 
lack of differentiation between definition and properties as well as between 
the necessary elements for congruence and the implications of that con-
gruence. Therefore, the above proof indicates that Susan was at the informal 
level of deduction. In what follows, the teacher-interviewer continued to 
challenge her deductive reasoning. 

Since Susan’s first idea was to compare the small triangles PTR and STQ, 
the teacher-interviewer took the opportunity to ask her to prove the con-
gruence of these triangles. Susan considered the congruence of angles RPQ 
and RSQ as an implication of the congruence of the triangles PRQ and SRQ 
that she had just completed. She asserted that the vertical angles PTR and 
STQ were congruent and that the sides PR and SQ are congruent because 
the trapezoid was isosceles. Then she said that these elements were not 
enough to apply the ASA criterion. It was clear that she was not able to 
make the connection with the sum of the angles of a triangle being 180° in 
order to use the angle-side-angle criterion of congruence. Her instrumental 
understanding came up one more time. Once the teacher-interviewer hel-
ped Susan to see the relationship among the angles, she wrote the proof of 
the congruence of these triangles. She also wrote that TR=TQ and TP=TS as 
implications of this congruence. Taking into account the equality of these 
sides, she concluded that point T, intersection of the diagonals, was on the 
perpendicular bisector of the bases in isosceles trapezoids. Therefore, Susan 
had proven that “if a trapezoid is isosceles, the point of intersection of the 
diagonals lies on the perpendicular bisector to both bases.”

The teacher-interviewer prompted Susan to summarize the properties of 
isosceles trapezoids she knew up to now.

424. Interviewer:  Now, what do we know about the properties of isosceles  
   trapezoids?
425. Susan:  With the…
426. Interviewer: A property or properties of isosceles trapezoids.
427. Susan:  The whole…
428. Interviewer:  From the definition to the properties, what do you  
   know? 
429. Susan:   In order for a trapezoid to be isosceles, the diagonals  
   have to be equal and also their intersection should lie on  
   the perpendicular bisector of the bases.

The way Susan worded her conclusions (line 429) indicates she did not 
clearly recognized that in the statements she proved, the given (i.e., the 
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sufficient condition) was that the trapezoid was isosceles, and what needed 
to be proved (i.e., the necessary conditions) were: (a) that the diagonals 
were congruent, and (b) that the point of intersection of the diagonals lies 
on the perpendicular bisector of both bases. This indicates, once again, that 
although Susan was making some progress she was still at the analysis level 
(level 1) of the Van Hiele model. 

In what follows, the teacher-interviewer asked Susan to prove the conver-
ses of the above propositions. First the teacher-interviewer asked Susan to 
prove that “if the diagonals of a trapezoid are congruent, then the trapezoid 
is isosceles”. Susan wrote the statement on the GSP and proceeded to think 
about the proof. 

Proving that if the diagonals in a trapezoid are congruent,  
it is an isosceles trapezoid 

The teacher-interviewer wanted Susan to differentiate between the suffi-
cient and necessary conditions of a geometric proposition. The teacher-
interviewer inferred that a good way to do it was to ask her to prove the 
converse of the proposition she had proved (i.e., if the trapezoid is isosce-
les, then the diagonals are congruent). Susan remained surprised and silent 
for a moment. It seems as if such a proposition was something strange in 
Susan’s mind because since the beginning she also took as definition of 
isosceles trapezoids those trapezoids with congruent diagonals. While she 
worked on this proof, she was fluctuating between the levels of analysis, 
informal deduction, and deduction in the Van Hiele model. She struggled 
trying to understand what she had to prove and finally she decided to cons-
truct a new figure with two equal diagonals forming a quadrilateral. Then 
she realized that such a quadrilateral was not a trapezoid. At that point the 
teacher-interviewer clarified for her that the given was that the diagonals in 
a trapezoid were congruent and therefore she had to prove that under this 
condition the trapezoid would be isosceles. Susan abandoned the quadri-
lateral with the equal diagonals and made the drawing in Figure 5.

Figure 5. A monologue comparing the big triangles PQR and SQR



181

C
A

PÍ
TU

LO
 S

EX
TO

Looking at Figure 5 she started a monologue comparing the big trian-
gles PQR and SRQ and explained to herself that the triangles had only two 
sides congruent and there was no information about angles. Susan could 
not figure out how to prove it and she was repeating that “if the diagonals 
in a trapezoid are equal, then the trapezoid would be isosceles”. Then the 
teacher-interviewer guided her to figure out that what she needed was to 
construct right triangles to overcome the difficulty of the lack of angles. This 
was a crucial hint that Susan played with and thought for a while. Finally, 
she constructed the appropriate perpendicular lines forming the rectangle 
RVUQ which simultaneously determined the right triangles RVS and QUP 
as well as the right triangles RVP and QUS (Figure 6).

Figure 6. The appropriate perpendicular lines forming the rectangle RVUQ

After this construction, she proved that triangle RVS is congruent to triangle 
QUP using the congruence of the diagonals (RS=PQ) and the congruence 
of the sides RV and QU (RV=QU) due to the fact that perpendicular seg-
ments between parallel lines are equal. She stated that one of the implica-
tions of this congruence was the congruence of VS and UP (VS=UP). She 
used this implication to prove that the right triangles RVP and QUS were 
congruent. She took the time to justify the equality of the segments VP 
and SU. She wrote, “VP=SU since VS=VP+PS and PU=PS+SU and VS=PU”. 
Then she noticed that she had enough elements to justify the congruence 
of the other pair of right triangles RVP and QUS because “VR=UQ and 
VP=SU”. As an implication of this congruence, she concluded that PR was 
congruent to SQ and, therefore, the trapezoid was an isosceles trapezoid 
because the non-parallel sides were congruent. After the hint was given to 
Susan to use an auxiliary construction to introduce right triangles, she took 
off with the proof. Her reasoning in this proof indicates that, with the assis-
tance of the teacher-interviewer, she could move up to the deductive level 
(level 3) of the Van Hiele model.
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Proving the converse of the proposition that when the trapezoid is  
isosceles, the intersection of its diagonals lies on the perpendicular  
bisector of the bases

The teacher-interviewer wanted to know, at this point, how stable Susan’s 
deductive level was. Thus she stated the following proposition and Susan 
wrote it on the GSP: “if the intersection of the diagonals lies on the per-
pendicular bisector to one of the bases of a trapezoid, then the trapezoid 
is an isosceles trapezoid”. Susan was made aware that she had proven the 
converse of this proposition before and was asked to state that proposition. 
She said: “if a trapezoid is isosceles, the intersection of the diagonals lies on 
the perpendicular bisector of its bases”. This time, Susan stated it correctly. 
This indicates her awareness of the differentiation between sufficient and 
necessary conditions. Then, she was asked to prove the converse of that 
proposition here stated by the teacher-interviewer.

Figure 7. Triangle GEB is congruent to triangle GED

Susan constructed Figure 7 and proved that triangle GEB is congruent to 
triangle GED giving the following argument. “GE=GE, BE=DE just because 
it’s the midpoint, and then BG=DG they are hypotenuses of these right trian-
gles (Pythagorean theorem)”. Then, she proved that ∆AGH is congruent to 
∆CGH giving the following argument. 

∠AGH=∠CGH because ∠AGH=∠EGD vertical angles, ∠CGH=∠BGE 
vertical angles; but I know that ∠BGE =∠DGE as an implication of the 
congruent triangles GED and GEB. I also know that HG=HG and an-
gles GHA and GHC are right angles because BD is parallel to AC and 
EH is perpendicular to BD. Then, the right triangles AGH and CGH are 
congruent. Then, an implication is that GA=GC. 

Finally, Susan explained that the point G is equidistant from points A 
and C, and therefore, G lies on the perpendicular bisector of AC. So AG + 
GD=CG + GB, this means that AD=CB. Therefore, in the trapezoid ABDC, 
the diagonals AD and CB are congruent, making it an isosceles trapezoid. 
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The teacher-interviewer continued the testing Susan’s deductive level and 
she requested one more proof of the same proposition. Susan used the copy 
and paste facility of the GSP and she produced Figure 8. Then she said: 

Knowing that point G lies on the perpendicular bisector of BD, then 
triangle GBD is an isosceles triangle with congruent base angles. Since 
AC is parallel to BD, it implies that the alternate interior angles are 
congruent, and therefore, triangle GAC is isosceles too. Thus G is on 
the perpendicular bisector of AC. Then, the corresponding sums of 
the parts of each diagonal are congruent (i.e., the diagonals are con-
gruent) and the trapezoid is isosceles.

It was not clear if Susan was using the proposition she had proved before 
or if she used the property of the equality of the diagonals as a definition of 
isosceles trapezoids. Her proof did not specify the reason.

Figure 8. The copy and paste facility of the GSP

It was interesting that Susan offered one more proof of the proposition 
without a request for doing so. She went further and proved that triangles 
GBA and GCD were congruent by SAS. At the beginning of the interview, 
she wanted to prove that these triangles were congruent, but in that occa-
sion she did not have the geometric conditions to support the argument. 
This time, she gave the following argument: “I just proved that AG=GC, 
GD=GB and the vertical angles ∠AGB=∠CGD. Then, by SAS, triangle GBA 
and triangle GDC are congruent. Therefore, AB is congruent to CD and the 
trapezoid is an isosceles trapezoid”. Here Susan used the definition of isos-
celes trapezoids as trapezoids with non-parallel sides congruent. When she 
finished, she smiled and said “I did it”.

Susan’s last proofs indicate that, with the guidance of the teacher-inter-
viewer, she could move between different Van Hiele levels. It was a conti-
nued effort for two hours, but in the process Susan was learning how to use 
the GSP not only as a technical tool, but also as a psychological-symbolic 
tool to direct her conceptual activity. The fact that she was now able to co-
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rrectly state the proposition “if a trapezoid is isosceles, the intersection of 
the diagonals lies on the perpendicular bisector of its bases”, which she had 
stated incorrectly before, and at the same time she was now able to prove its 
converse as stated by the teacher-interviewer (“if the intersection of the dia-
gonals lies on the perpendicular bisector to one of the bases of a trapezoid, 
then the trapezoid is an isosceles trapezoid”) indicates that Susan have star-
ted to consolidate her deductive level. However, it was not clear whether or 
not she was aware of the differentiation between definition and properties 
of isosceles trapezoids; differentiations that would be of great assistance in 
the development of her geometric thinking. 

At the end, the teacher-interviewer asked Susan what she could do, at this 
point, to transform Figure 1 into an isosceles trapezoid. Susan said “I would 
draw the perpendicular bisectors of the bases and drag points or segments 
to make the intersections of the diagonals go on the perpendicular bisec-
tors.” Susan has gotten the idea although she was too tired to actually do it. 
However, her answer indicates that now she was able to use the GSP as a 
psychological-symbolic tool.

Concluding remarks

From the analysis of the interview, we could say that Susan first experienced 
the GSP geometric environment only as a technical tool to measure and 
to draw segments. Then, guided by the teacher-interviewer’s indirect hints 
and questions, she started to use the GSP as a psychological-symbolic tool 
to deepen her knowledge about the properties of isosceles trapezoids. The 
GSP provided her with opportunities to make dynamic constructions and 
it also fostered her ways of thinking and means of arguing geometric pro-
ofs. That Susan first used the GSP as a technical tool was illustrated when 
she argued the congruence of segments and triangles by either measuring 
their lengths or their areas. However, with the guidance of the teacher-
interviewer, she came around to use the GSP as a psychological-symbolic 
tool to direct her geometric explorations and her ways of arguing geometric 
proofs about properties of isosceles trapezoids. This indicates that while the 
GSP is, by nature, a technical tool that facilitates the production of clean 
drawings (whether or not they satisfy the necessary conditions to pass the 
dragging test), this tool also has the potential of being transformed, by the 
learner, into a psychological tool to facilitate the exploration of geometric 
drawings and the formation of geometric arguments.

At the beginning of the interview, it seems that Susan had only an instru-
mental understanding of some properties of isosceles trapezoids because 
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she could not transform the trapezoid in Figure 1 into an isosceles one. 
Susan had also different definitions of isosceles trapezoids because she con-
sidered their properties also as definitions or combined them according to 
need. For example, one definition she used was that isosceles trapezoids 
have the non-parallel sides equal and the pairs of base angles congruent. 
Another definition she used was that isosceles trapezoids are those with 
equal diagonals. In addition, the property that relates the intersection of 
the diagonals of isosceles trapezoids and the perpendicular bisector of the 
bases was unknown to her. The teacher-interviewer guided her to arrive at 
this property. Midway through the interview, she was able to give a proof 
of the property that states that “if a trapezoid is isosceles, the intersection of 
the diagonals lies on the perpendicular bisector of its bases”. Since she arri-
ved to this property directed by the guidance of the teacher-interviewer, it 
was not surprising that she summarized her findings in the following terms: 
“In order for a trapezoid to be isosceles, the diagonals have to be equal 
and also their intersection should lie on the perpendicular bisector of the 
bases”. In this statement, Susan indicated two issues about her understan-
ding. First, that she could not separate the two properties of the diagonals 
of isosceles trapezoids; one referring to the equality of the diagonals, the 
other referring to the relationship between the intersection of the diagonals 
and the perpendicular bisectors of the bases. Second, that she was unaware 
of the sufficient and necessary conditions of the statement she had proved. 
She failed to recognize that the sufficient condition for her proof was that 
the trapezoid was isosceles. For this reason, by the end of the interview, 
the teacher-interviewer carefully stated the converse of the property Susan 
had proved but had incorrectly stated. The teacher-interviewer asked Susan 
to prove that “if the intersection of the diagonals lies on the perpendicular 
bisector of one of the bases of a trapezoid, then the trapezoid is an isosceles 
trapezoid”. After Susan completed the proof of this statement, the teacher-
interviewer challenged her to give another proof of the same proposition. 
Susan’s improvement was manifested when she was able to generate two 
more proofs for the same statement. This improvement was also the result 
of a triadic interaction among Susan, the teacher-interviewer and the GSP. 
In addition, Susan’s later monologues indicated that the GSP mediated the 
formation of her geometric arguments as she acted and reacted upon her 
drawings. Thus, she used the GSP as a psychological-symbolic tool.

The GSP also provided the teacher-interviewer with opportunities to make 
hypotheses about Susan’s line of reasoning and to challenge her through 
indirect questioning. Without the GSP, it would have been difficult to un-
derstand Susan geometric assumptions since, most of the time, her argu-
ments were tacit and incomplete. Appropriate questioning on the part of the 
teacher-interviewer, mediated by the GSP, helped the lateral entry teacher to 
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refine her previous knowledge about isosceles trapezoids and to investigate 
a property of isosceles trapezoids that was unknown to her. The analysis also 
indicates that, little by little, this lateral entry teacher investigated several of 
the properties of isosceles trapezoids constructing different drawings and 
exploring them in the GSP environment. In her proofs, she used her pre-
vious knowledge about the congruence of triangles and the relationships 
among the angles formed between parallel lines intersected by a transversal. 
Once Susan had a good understanding of the property of isosceles trape-
zoids relating the intersection of the diagonals to the perpendicular bisector 
of the bases, she was able to verbalize how she would transform Figure 1 
into an isosceles trapezoid.

During the months of the teaching-experiment, the GSP became a useful 
tool to explore questions and to interact with the participating teachers. That 
is the communication was triadic among the student-teacher, the GSP and 
the teacher-interviewer. In other words, the GSP made more meaningful the 
interaction between the teacher-interviewer and the student-teacher. The 
effectiveness of this dynamic environment depended not only on the careful 
designed of geometric tasks, but also on the teacher-interviewer’s ability to 
make hypotheses about the conceptual needs of the student-teacher to an-
ticipate and guide the line of questioning. We concur with Mariotti (2000), 
Jones (2000) and Arzarello et al. (2002), that educational change on the 
teaching and learning of geometry happens not only because of the software 
but also because of the teacher’s engagement in helping students attain a 
level of theoretical thinking (deductive level) in the study of geometry. No-
netheless, this engagement of teachers with students will become a reality 
only when teachers themselves have gone through geometric learning expe-
riences that involve geometric environments like the GSP and learn to use 
these environments not only as technical tools, but also as psychological-
symbolic tools to establish and achieve geometric goals.
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