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Abstract 

We describe 24 third (8-9 years old) and 24 fifth (10-11 years old) graders’ 

generalization working with the same problem involving a function. Generalizing and 

representing functional relationships are considered key elements in a functional 

approach to early algebra. Focusing on functional relationships can provide insights into 

how students work with two or more covarying quantities rather than isolated 

computations, and focusing on representations can help to identify the type of 

representations useful to them. The goals of this study are to: (1) describe the functional 

relationships evidenced in students’ responses, and (2) describe the representations that 

the students use. In addressing these research objectives, we describe student responses 

drawn from a Classroom Teaching Experiment in each grade. We analyzed students’ 

written responses to different questions designed to generalize the relationships in a 

problem that involves the function y=2x+6. Our findings illustrate that 11 third graders 

and 19 fifth graders provide evidence of functional relationships in their responses. 

Three third graders and all fifth graders generalized the relationship. We conclude that 

these differences may be due to the students’ previous classroom mathematical 

experiences, since students in higher grades would be more likely to focus on the 

relationships between variables, whereas third-graders would focus on the details of 

arithmetic computations. In addition, we find that natural language is the main vehicle 

used to generalize in both grades. Unlike third graders, fifth graders perceive general 

rules from the numerical calculation and express these generalizations even when not 

explicitly requested to do so. 
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Introduction 

Research in school algebra demonstrates the importance of students’ ability to 

generalize in different grades. Although definitions of generalization vary in the field of 

mathematics education (e.g., Dienes, 1961; Dubinsky & Harel, 1992; Kaput, 2008; 

Mason, 1996; Radford, 2003; Sfard, 1991), a growing research effort seeks to 

demonstrate the importance of elementary students’ generalization. Multiple reasons 

justify including generalization in the early grades. Generalization promotes flexibility 

in students’ mathematical thinking, allowing them to: (a) set aside irrelevant 

information; (b) adapt, adjust, and reorganize previous experiences; (c) pay attention to 

ideas, skills, and properties involved in different situations; (d) make generalization a 

powerful tool for solving problems and understanding different mathematical situations 

(Carpenter & Levi, 2000; Carraher & Schliemann, 2002, 2015; English & Warren, 

1998; Warren, 2005). By considering generalization as a central element of elementary 

students’ mathematical experiences, this paper moves away from positions that relate 

generalization exclusively to algebraic notation (Kieran, 1989). 

Broadly speaking, we adopt the idea that algebraic thinking (also known as early 

algebra) is necessary starting in the elementary grades and has two essential aspects: (a) 

generalization; and (b) using symbols to represent generalizations, which enables 

problem solving, communicating, and articulating ideas (Carpenter & Levi, 2000; 

Kaput, 2008). Generalizing and expressing generalizations through different 

representations are thus core elements of the learning of algebra in the early grades 

(Cooper & Warren, 2011). To describe students’ generalizations, we focus on a 

functional approach to algebraic thinking (Carraher & Schliemann, 2007). Within this 

approach, functions are the prime mathematical content, which: (a) serves as 

mathematical context for introducing algebra in the elementary grades; (b) can unify a 

wide range of isolated topics, such as arithmetic computations, fractions, ratio, and 

proportion, and formulas that relate quantities; (c) serves to connect students’ daily 

experiences and mathematics and can enrich many arithmetic activities; and (d) 

improves organization of the teaching and learning of algebra (Carraher & Schliemann, 

2019; Carraher, Schliemann, & Schwartz, 2008; Chazan, 2000; Dubinsky & Harel, 

1992; Freudenthal, 1992; Schwartz & Yerushalmy, 1992). In this context, the questions 

we seek to answer are: What and how do third and fifth graders generalize relationships 

in a problem involving a linear function (also known as a functional thinking task)? The 

four main reasons motivating this study are presented below. 
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First, an increasing number of studies show how elementary students consider 

the relationships between variables in different functional thinking tasks (e.g., Blanton, 

Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015; Carraher & Schliemann, 2007; 

Cooper & Warren, 2011; Morales, Cañadas, Brizuela, & Gómez, 2018). Through 

examples that show how these students perceive and describe functional relationships 

when solving problems, these studies provide evidence to describe in greater depth the 

types of such relationships students evidence. Focusing on in-depth description of 

functional relationships evidenced by students provides insights into how students work 

with two or more covarying quantities rather than isolated computations. Further, most 

studies that focus on the functional relationships that students demonstrate do so in 

instructional contexts (e.g., Blanton, Brizuela et al., 2015; Carraher, Martinez, & 

Schliemann, 2008; Radford, 2018) We focus on what type of functional relationships 

students evidence when not directly instructed in generalization of covarying quantities. 

Second, representations1 are a way to describe and analyze how students 

perceive and express the structures and relationships embedded in a given problem, 

which helps to structure and expand students’ thinking (Brizuela & Earnest, 2008). 

Although algebraic notation is the traditional type of representation used in school 

algebra, generalizations can be represented in other ways, such as using natural 

language to communicate and represent algebraic concepts or ideas (Radford, 2003). 

Focusing on the different types of representation used by elementary students (e.g., 

natural language, pictorial, numerical, tabular, graphical) could help us to describe 

students’ functional thinking and identify the types of representations useful to them. 

Third, generalization is a core aspect in functional thinking and working with 

problems that involve functions becomes an optimal scenario for students to identify 

patterns and generalizations (Warren, 2005), and analyze functional behavior through 

different representations (Blanton, Levi, Crites, & Dougherty, 2011; Cañadas & Molina, 

2016). Some authors describe young students as naturally predisposed to perceiving 

regularities and generalizing (Mason, 1996; Schifter, Bastable, Russell, Seyferth, & 

Riddle, 2008), even when they are unable to represent these processes clearly. We seek 

to describe students’ generalization in response to different questions, including 

questions about specific values and generalization. 
                                                
1 This study focuses on external representations to distinguish them from mental or internal ones. We 
therefore use the term “representation” or “representations” to refer to external representations, produced 
with pencil and paper, that are intentional, permanent, and spatial in nature. 
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Fourth, this study is important in Spain because regularities and generalization 

form part of Spain’s national curriculum. According to this curriculum, by the end of 

elementary school, students should be able to “describe and analyze situations of 

change, find patterns, regularities, and mathematical laws in numerical, geometric, and 

functional contexts, valuing their usefulness to make predictions” (Ministerio de 

Educación, Cultura y Deporte, 2014, p. 19387). However, the types of taks that are 

proposed at elementary level related to theses contents are not usual. We select third and 

fifth graders because research on functional thinking in these grades is scarce. Useful 

teaching implications could be derived, however, by relating our study to previous 

studies that focus on first graders (e.g., Morales et al., 2018).  

Considering the ideas presented above and the research question—What and 

how do third and fifth graders generalize relationships in a problem involving a linear 

function?—we define two research objectives: 

1. To describe the functional relationships evidenced in student’s responses 

(what); and 

2. To describe representations used by students (how). 

In tackling these research objectives, we analyze evidence from a specific Classroom 

Teaching Experiment (CTE, hereafter) session in which students worked with a 

problem and answered various questions on a worksheet.  

Conceptual framework 

The conceptual framework that guides our study is based on Kaput’s proposals (2008). 

For Kaput, “the heart of algebraic reasoning is comprised of complex symbolization 

processes that serve purposeful generalization and reasoning with generalizations” (p. 

9). We focus specifically on a functional approach to early algebra, in which both 

generalizing relationships among covarying quantities and representing these 

relationships are key elements. According to Blanton and Kaput (2011), this approach 

(also known as functional thinking) involves the “construction and generalization of 

patterns and relationships, using a diversity of representations and treating generalized 

relationships, or functions, as the result of useful mathematical objects” (p. 6-7). Smith 

(2008) indicates that functional thinking is “focused on the relationship between two (or 

more) variables; specifically, the types of thoughts that go from specific relationships to 

generalizations of relationships” (p. 143). We therefore assume that functional thinking 

involves functional relationships, which may or may not be generalized and which may 

be expressed through different types of representations. 
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Functions and functional relationships 

In this study, the function is the mathematical content that describes students’ 

generalization. We adopt the concept of function as “a correspondence between two 

nonempty sets that assigns to every element in the first set (the domain) exactly one 

element in the second set (codomain)” (Vinner & Dreyfus, 1989, p. 357). Our focus is 

on linear functions, specifically the type y=mx+b, where m and b are constants, and 

variables x and y natural numbers. This type of function is deemed suitable for the age 

and type of work expected of elementary school students in the functional approach to 

early algebra (Carraher & Schliemann, 2007).  

In functional thinking tasks, functions are presented through contextualized 

problems. The problem used in this study, the tiles problem, exemplifies such problems 

and, additionally, it reflects our adoption about what is a function (see Figure 1). 

 
Figure 1. The tiles problems 

The tiles problem involves the function g=2w+6, with natural numbers as the domain 

and codomain. This problem involves two variables: the number of white tiles (w) and 

the number of grey tiles (g). For example, if we want to know the number of grey tiles 

to put around a number of white tiles, g is expressed in terms of w. In this case, w is the 

independent variable and g is the dependent variable.  

In working with a functional thinking task, students have different ways to 

interpret and build how the dependent and independent variables relate to each other: (a) 

recurrence (or recursive patterning) describes attending to variation within one quantity 

(in the tiles problem, “the number of grey tiles increases by 2”); (b) correspondence 

emphasizes the relation between a corresponding pair of variables (e.g., “two times the 

number of white tiles plus six”); and covariation analyzes how two quantities covary, 

that is, how change in one (from an to an+1, for instance) produces change in the other 

(from f(an) to f(an+1)) (e.g., “when the number of white tiles increases by one, the 

number of grey tiles increases by two”) (Confrey & Smith, 1994; Smith, 2008).  

A school wants to replace the floor in all its corridors, where the tiles are severely 
damaged. Its board decides to lay white and grey tiles on all the floors. All the tiles 
are square and of the same size and are to be laid in the following pattern: 

       
       
       

The school asks a company to replace the floors in all the corridors. We want you to 
help the masons answer some questions before they can start work.  
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The literature on functional thinking distinguishes between (1) recursive patterns 

and (2) functional relationships (correspondence and covariation) and studies how to 

move from (1) to (2) (e.g., Blanton, Brizuela et al., 2015; Cañadas, Brizuela, & Blanton, 

2016; Moss & McNab, 2011; Rivera & Becker, 2011). This distinction arises because 

recursive patterns center on the values of a single variable, whereas 

correspondence/covariation involves both variables. The literature on functional 

thinking reports two main trends in recursive patterns: (a) they give students difficulty 

when students try to focus on both variables (e.g., Carraher et al., 2008); and (b) 

students in the early grades of elementary school have been shown to evolve from 

ability to identify recurrent patterns to providing evidence of correspondence and 

covariation (e.g., Cañadas et al., 2016). 

Generalization and representations 

We argue that generalizing from a functional approach to early algebra involves 

attending, perceiving, and expressing how one quantity varies with respect to the other 

in general (Blanton, 2008, 2017). Representations also become the means by which 

students can organize and express the relationships identified in order to understand, 

analyze, explain, predict, and justify the way in which the variables are related. From 

our perspective, elementary students can express generalization using different types of 

representation: (a) natural language, (b) pictorial, (c) numerical, (d) algebraic notation, 

(e) tabular, and (f) graphical (Carraher et al., 2008). To illustrate examples of students’ 

generalization through different types of representations, some authors have used the 

problem that includes a number of tables (t, independent variable) and the number of 

people who can sit at them (p, dependent variable) (e.g., Blanton, Isler-Baykal, Stroud, 

Stephens, Knuth et al., 2019; Carraher & Schliemann, 2007; Merino, Cañadas, & 

Molina, 2013; Moss, Beatty, Barkin, & Shillolo, 2008). Figure 2 presents two ways of 

introducing this problem. 

 

(a) 

(b) 
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Figure 2. Tables and people problems 

In studying the problem of the tables indicated in (a), which involves the function p=2t, 

Blanton et al. (2019) show that third graders used different types of representation to 

determine the relationship between the variables, generalized the relationship through 

natural language, and used algebraic notation, stating: (a) the number of people is 2 

times the number of tables. If you add the number of tables twice, you get the number of 

people, or (b) 2Ít=p; number of people= 2Ít; t+t=p.  

Different authors emphasize the role of specific representations in students’ 

reasoning with functional thinking tasks. Some authors, for instance, note that natural 

language is a useful tool for expressing generalizations and consider it a crucial scaffold 

for the development of more symbolic representations (Radford, 2003; 2018; Stephens 

et al., 2017). In addition, pictorial and manipulative (or concrete materials) 

representations become useful tools aiding students in finding the relationships between 

variables. Through exploration of the relationship between “position” and “figure,” 

elementary students can generalize the relationship between the variables successfully 

(Cooper & Warren, 2008; Moss & MacNab, 2011). 

The study 

This study is part of a broader Classroom Teaching Experiment (CTE) on functional 

thinking in third graders (8-9 years old) and fifth graders (10-11 years old). The study 

followed research design guidelines specifically established for the CTE. The CTE aims 

to understand teaching-learning processes when the researcher acts actively as a teacher, 

studying the development of ideas, tools, or models that include students, teachers, or 

groups (Cobb & Gravemeijer, 2008; Kelly & Lesh, 2000).  

We designed a four-session CTE for each grade that posed a problem in each 

session. The purposes of the sessions were to explore how students generalize, 

considering students’ work when they: (a) relate the variables involved in a functional 

thinking task, and (b) use different types of representations to express functional 

relationships. In both the third and the fifth grade classes, CTE was performed during 

the last term of the year. Table 1 shows the contexts and functions used in each of the 

four sessions for each grade; some were selected or adapted from previous studies; 

others were designed by the research team based on different types of linear functions. 
Table 1. Contexts and Functions presented in Each Session 
Session Context Function 

Third 
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Table 1. Contexts and Functions presented in Each Session 
Session Context Function 
1 María and Raúl are brother and sister. They live in La Zubia. María is 

the elder sibling. We know that María is 5 years older than Raúl. 
y=x+5 

2 and 3 Carlos wants to sell shirts with his school’s badge so he can go on a 
study trip with his class. He earns 3 euros for each shirt he sells. 

y=3x 

4 A school wants to re-tile its corridors because they are in poor 
condition. Its administration decides to use a combination of white 
and grey tiles, all square and all the same size, to be laid out as in this 
figure (adapted from Küchemann, 1981). 

 

y=2x+6 

Fifth 
1 Carlos wants to sell shirts with his school’s badge so he can go on a 

study trip with his class. He earns 3 euros for each shirt he sells. 
y=3x 

2 Daniel and Carla sell different shirts for their study trip.  
Carla gets 3 euros for each shirt.  
Daniel has saved 15 euros. Additionally, for each shirt he sells, he 
gets 2 euros. 

y =3x and  
y =2x+15 

3 Juan has saved some money (he only has euros, no cents). His 
grandmother wants to reward him for a job she has given him. She 
offers him two deals: 
Deal 1. She will double his money. 
Deal 2. She will triple his money and then take away 7 euros. 
(adapted from Brizuela & Earnest, 2008). 

y=2x and  
y =3x-7 

4 A school wants to re-tile its corridors because they are in poor 
condition. Its administration decides to use a combination of white 
and grey tiles, all square and all the same size, to be laid out as in this 
figure (adapted from Küchemann, 1981). 

 

y=2x+6 

We chose the problems presented to students (see Table 1) according to three criteria: 

(a) types of functions that would be appropriate for students of these ages; (b) type of 

structure (additive and/or multiplicative) involved in each function; and (c) kind of 

values involved in each problem. We also chose contexts that were familiar and 

attractive to students and organized the problems from less-to-more difficulty according 

to results in previous studies (e.g., Blanton, Brizuela et al., 2015). Students were asked 

to answer several questions in connection with the problems in Table 1. These questions 

involved: (a) true and false items, (b) open-ended questions, and (c) create/complete 

function tables or Cartesian graphing. 

In each session, a research team worked with the students. The team was 

composed of the teacher-researcher who led the sessions and two researchers who video 
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recorded the sessions and helped to answer students’ questions when they were working 

on the problem.  

Data selection  

This paper reports the findings from the last CTE session in each group: the tiles 

problem. In both grades, the students worked in the first three sessions with problems 

involving two types of functions, y=x+a and y=ax. In the fourth session, the problem 

involved exclusively the type y=ax+b (in the fifth grade group, the second and third 

sessions included this type of function and y=ax). Two main issues motivated our focus 

on the last session. Firstly, the functional thinking task was the same for both grades, 

providing the opportunity to explore students’ generalization from different grades. 

Secondly, in this last session, the students were more used to working with functional 

thinking tasks. 

Participants 

Twenty-four third graders (8-9 years old) and twenty-four fifth graders (10-11 years 

old) enrolled in a school in southern Spain participated in the CTE. The school was 

intentionally chosen because of its interest in collaborating in the research study. The 

families’ socioeconomic level was medium-high. The students had different levels of 

achievement, and the school had only one third-grade and one fifth-grade classroom. As 

Algebra is not a content introduced at elementary level in Spain, students did not have 

previous algebra knowledge. Prior to the CTE, these students had not worked with 

problems involving generalization and/or functions. Among the arithmetic contents that 

could influence students’ work, third graders had been taught to add and subtract, and to 

count one by one, two by two, five by five, and ten by ten. They had also been 

introduced to multiplication as repeated addition but had not yet explored multiplication 

tables or multiplication properties. The fifth graders had worked with the four arithmetic 

operations using natural, whole, and rational numbers.  

Instruments and data collection  

The fourth CTE session (the one we describe here) was divided into three stages. First, 

the teacher-researcher introduced the problem, whose underlying function was y=2x+6 

(see Figure 3), and various questions. The teacher-researcher led a discussion on the 

context of the tiles problem, asking some questions to assess the students’ 

understanding of the problem, and gave some instructions. 
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Figure 3. The tile problem 

The students were then given a worksheet on which they worked individually. The 

questions were designed based on the inductive reasoning model described by Cañadas 

and Castro (2007), which involves questions that include specific values (Q1-Q4) and 

generalization (Q5). The students’ answers to the worksheet are the data analyzed in 

this paper. 

Lastly, one teacher-researcher led a classroom discussion about the responses to 

some of the questions on the worksheet. The sole difference between the two groups 

was that the third graders were given white and grey square papers with which to work 

if they wanted to. 

Data and categories of analysis 

We analyze each student’s responses to the worksheet, considering two categories that 

emerge from theoretical perspectives derived from previous studies: (a) functional 

relationships, identifying the relationships underlying students’ responses to the tiles 

problem questions (Confrey & Smith, 1994; Smith, 2008); and (b) representations, 

describing how students express the functional relationships (Carraher et al., 2008). The 

first category corresponds to the first research objective (to describe the functional 

relationships evidenced in student’s responses), and the second category to the second 

research objective (to describe representations used by students). To illustrate, Table 2 

shows examples of how we identified functional relationships and representations in a 

fifth grader’s answers. 

A school wants to replace the floor in all its corridors, where the tiles are severely 
damaged. Its board decides to lay white and grey tiles on all the floors. All the tiles 
are square and of the same size and are to be laid in the following pattern: 

       
       
       

The school asks a company to replace the floors in all the corridors. We want you to 
help the masons answer some questions before they can start work.  
Q1. How many grey tiles do they need if a corridor has five white tiles?  
Q2. Some corridors are longer than others. Therefore, the masons need different 
numbers of tiles for each corridor. How many grey tiles do they need for a corridor 
with eight white tiles?  
Q3. How many grey tiles do they need for a corridor with 10 white tiles?  
Q4. How many grey tiles do they need for a corridor with 100 white tiles?  
Q5. The masons always lay the white tiles first. How can they know how many grey 
tiles tiles they need if they’ve already laid the white tiles? 
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Table 2. Examples of Functional Relationships underlying a Student’s Responses and 
Representations used by the Student 

Question (Q) Student’s responses 
Functional 

Relationship Representation 
Q2 (8 white 
tiles) 

16 grey tiles are needed. For 
each white tile, there are 2 
greys except for the ones on 
the sides— 6, or all of the 
white ones Í2+6 on the 
sides. 

Correspondence Natural language 
Numerical  

Q2 (10 white 
tiles) 

There are 22 grey tiles 
according to the previous 
process. 

Correspondence  Natural language 

Q5 
(generalization) 

Multiplying the whites by 
two plus 6 from the sides 
xÍ2+6=x 

Correspondence Natural language 
Algebraic notation  

As Table 2 shows, the student was able to provide evidence of functional relationships 

when asked for specific values or when generalizing. Given the problem type, students 

were deemed to have expressed a functional relationship when: (a) a regularity was 

identified in at least two of the first three questions (Q1-Q3); (b) a functional 

relationship was identified in Q4 and the preceding questions; or (c) when a functional 

relationship was identified in the answer to Q5. These criteria were adopted to ensure 

that functional relationships would not be identified based on the answer to a single 

question that might have been found arithmetically. Further, when describing students’ 

work, we were not interested in whether their answers were correct or incorrect. Our 

focus was primarily on the paths they considered to relate variables and/or express 

general relationships. 

Table 3 presents the categories, subcategories, and codes used in each student’s 

responses. 
Table 3. Categories used in each Student’s Responses 
Category Subcategory Code 
1. Functional 
relationships 
(Confrey & 
Smith, 1994; 
Smith, 2008) 

1.1. It is possible to identify a 
functional relationship 

1.1.1. Recursive patterns, specific 
values. 
1.1.2. Recursive patterns, generalizing. 
1.1.3 Correspondence, specific values. 
1.1.4. Correspondence, generalizing. 
1.1.5. Covariation, specific values. 
1.1.6. Covariation, generalizing. 

 
 

 1.2. It is not possible to 
identify a functional 
relationship 

1.2.1. Student only answered the 
question. 

 1.2.2. Student repeated the problem 
wording. 

 1.2.3 Student furnished or alluded to 
pictorial representations but did not 
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Table 3. Categories used in each Student’s Responses 
Category Subcategory Code 

provide information on the relationship. 
1.2.4. Student alluded to manipulative 
representations (white and grey paper 
squares) but did not provide information 
on the relationship. 

 1.2.5. Student performed arithmetic 
operations with no clear meaning. 

 1.3. Did not answer the 
question 

 

2. Representations 2.1. Natural language  
(Carraher et al., 
2008) 

2.2. Pictorial 
2.3. Manipulative 

 

 2.4. Numerical  
 2.5. Algebraic notation 

2.6. Tabular 
2.7. Graphical 

 

To summarize, we analyzed each student’s written responses according to the two 

categories: functional relationships and representations. The first author coded the 

students’ answers. The second author then checked the codes assigned. To guarantee 

inter-reliability of the codifications, after first author’s codification, we subjected the 

encodings to a calibration process that included joint coding sessions and discussion of 

the disagreements. This process enabled us to evaluate reliability. The reliability 

coefficient was greater than 90%, above the acceptable minimum (Tinsley & Brown, 

2000). 

Results and discussion 

Broadly speaking, 13 third-graders and five fifth-graders did not provide evidence of 

functional relationships in their responses. This situation allows us to interpret that the 

differences could due to the students’ previous classroom mathematical experiences; 

students in higher grades are more likely to focus on the relationships among quantities, 

whereas third-graders still focus on the details of arithmetic computations or pictorial 

representations introduced. Figure 4 presents sample answers given by students who did 

not provide evidence of functional relationships in their responses, one by a third grader 

(T212) and one by a fifth grader (F15) to Q3 (How many grey tiles do they need for a 

corridor with 10 white tiles? How did you figure that out?). 

 

                                                
2 To respect students’ anonymity, each was assigned a code consisting of the letter “T” to third graders 
and “F” to fifth graders, and a number from 1 to 24. 
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T21 F15  
26. counting the squares that are in the 

box [white and grey paper squares]. 

 
Figure 4. Third and fifth graders’ answer to Q3  

As Figure 4 shows, T21 used the white and grey paper squares to answer the question 

(code 1.2.4) without providing evidence of any relationships. F15, on the other hand, 

alluded to pictorial representations but did not provide information about the 

relationships (code 1.2.3).  

The following presents the results, organized by grade (third or fifth) and 

distinguishing functional relationships demonstrated by students and the type or types 

of representations the students used to express the relationships identified. 

Third graders 

Eleven students provided evidence of functional relationships, three of whom 

generalized the relationship involving white and grey tiles. The following sections 

describe the work of these 11 students. 

Functional relationships. Correspondence was the most frequent functional 

relationship in students’ responses. Table 4 presents the question in which 

correspondence was identified. Shading indicates evidence of covariation in the 

students’ answers. 
Table 4. Types of Functional Relationships demonstrated by Third Graders on Each Question 
 
 Student 

Questions 
Q1 Q2 Q3 Q4 Q5 

  T03 
 

ü ü ü ü 
  T05 ü ü ü ü 

 

  T06 ü ü ü ü ü 
  T09 

 
ü ü ü ü* 

  T11 ü ü 
 

ü ü* 
  T12 

 
ü ü ü 

 

  T13 
  

ü ü 
 

  T14 
 

ü ü ü 
 

  T19 ü  ü   
  T22 ü ü ü ü ü* 
  T24 

  
ü ü ü 

Note. T = third graders; Q = questions; * = generalization. 

Broadly speaking, the number of functional relationships identified in students’ 

responses working with specific values increased from Q1 to Q4. This idea could be 

explained in terms of the specific values involved in each question. For instance, 
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answering Q4 (100 white tiles) requires finding more sophisticated ways to relate the 

white and grey tiles (e.g., counting or drawing would be not a useful way to find the 

relationship). This situation is similar to that noted by other authors (e.g., Warren, 

Miller, & Cooper, 2007) who argue that students’ ability to identify functional 

relationships grows as they work with an increasing number of specific values involving 

two variables. Further, recursive patterning was not identified in these students, which is 

consistent with earlier reports (e.g., Cañadas et al., 2016; MacGregor & Stacey, 1995). 

This finding was foreseeable because our study posed the problem in a way intended to 

elicit correspondence and covariation, which relate the dependent and independent 

variables. We did not actually use consecutive values in the questions about the tiles 

problem. 

Based on the types of functional relationships the students demonstrate, we 

identify two main trends in their responses. Some only provide evidence of functional 

relationships when working with specific values (T03, T05, T06, T12, T13, T14, T19, 

and T24), while others generalize the relationship (T09, T11, and T22). The following 

describes examples of both functional relationships evidenced in students’ responses 

and generalizations of the relationship. 

Eight students only provided evidence of correspondence when they worked 

with specific values. Figure 5 illustrates sample responses by T13 to different questions 

that we deem representative of this group of students. 

Q3 (10 white 

tiles)  

Q4 (100 white 

tiles) 
 

Figure 5. T13’s answer to Q3 and Q4 

T13’s answers provide evidence that he focuses on the number of grey tiles when given 

the number of white tiles. In Q3 and Q4, he defined pairs of values (a, f(a)) for the a 

values in each specific value (10 and 100) and established their relationship to the 

number of grey tiles: 26 and 206, respectively. T13 answered both questions following 

the same “closed form rule” to describe a relation between quantities (Confrey & Smith, 

1994), adding the number of top and bottom grey tiles to the number of tiles on the left 

and right sides (3+3). T13 thus provides evidence of a rule constructed to determine the 

unique value of any given value (x), creating a correspondence between x and y. This 
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approach to decomposing the number of grey tiles—the same approach used in all of 

the questions—could indicate that T13 perceived a regularity that extended to different 

specific values but was not able to represent that regularity when asked directly about 

generalization. This result could be explained by authors who argue that young students 

are naturally predisposed to perceiving regularities and generalizing, even when they 

are unable to represent these processes clearly (Mason, 1996). 

On the other hand, three students did generalize, providing evidence of 

correspondence. Only one of these students, T09, did so correctly. Figure 6 presents the 

student’s answers to different questions.  

Q2 (8 white tiles) 
 

Q3 (10 white tiles) 
 

Q4 (100 white tiles)  

Q5 (general case) You add the number of white tiles twice and then you add 
6. 

Figure 6. T09’s answers to Q2, Q3, and Q4 

In Q2-Q4 answers, T09 identified the same numerical regularity: the number of white 

tiles twice plus 3+3 (the number of grey tiles to the left and right). The student was 

consistent in the “way” he expressed regularity (twice the number of white tiles plus 

three right and three left grey tiles). This answer seems to “capture” this regularity and 

extend it to any number of white tiles (as Q5). T09’s statement of the general rule 

identified is consistent with the regularity he detected from Q2-Q4. Based on this result 

and a similar line of inquiry, various authors describe the ability of elementary students 

to “generalize” regularities from arithmetic computations (Cooper & Warren, 2008; 

Pinto, Brizuela, & Cañadas, 2019). In some cases, like that of T09, students can express 

this generality for any value, while other students (e.g., the eight third-graders) do not 

express the general rule for any value. The other two students who generalized in Q5 

did so incorrectly; their answers referred only to the six tiles needed on the right and 

left, i.e., the constant term in the implicit function. For instance, T11 answered Q5: 

“adding 6 more.” She failed to see that the number of grey tiles on the top and bottom 

was twice the number of white tiles.  

Covariation was identified in two students’ answers (T03 and T12). T03, for 

example, provides evidence of covariation in Q3 (Figure 7). 
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Q2 (8 white tiles) 20. Set them [white and grey square tiles] up and 
count them. 

Q3 (10 white tiles) 22. If for 8 [referring to Q2] you need 20+2=22 

Figure 7. T03’s answer to Q3 

Figure 4 shows that T03 established a relationship between the number of grey tiles 

needed for the eight white tiles (in Q2) and the number of grey tiles given 10 white tiles 

(in Q3). Based on the relationship that for eight white tiles 20 grey tiles are needed, she 

reasoned that, if the number of white tiles increases by two, the number of grey tiles 

also increases by two. Her reasoning focuses on how two quantities covary and how 

change in one (from 8 to 10) produces change in the other (from 20 to 22). 

Representations. Third graders tended to express the relationships using a 

numerical representation or natural language. To illustrate their representations, Table 5 

shows the type of representation students used in each question. Shading indicates the 

student representation in which we identified covariation. 
Table 5. Types of Representations used by Students to express Functional Relationships 
 
 Student 

Questions 
Q1 Q2 Q3 Q4 Q5 

  T03 
 

M; NL NL; N N NL 
  T05 N N N N 

 

  T06 NL NL N N NL 
  T09 

 
N N N NL* 

  T11 NL NL; N 
 

NL; N NL; N* 
  T12 

 
NL; N N N 

 

  T13 
  

NL NL 
 

  T14 
 

NL NL; N N 
 

  T19 P; N  NL; N   
  T22 N N N N NL* 
  T24 

  
NL; N N P 

Note. T = third graders; Q = questions; * = generalization; NL=natural language; N=numerical; 
P=pictorial; M=manipulative; * = generalization.  

As Table 6 shows, and considering students’ responses to Q1 and Q2 (five and eight 

white tiles, respectively), students tend to express the relationships in the same way, 

numerically and/or using natural language. In their responses to Q3 and Q4 (10 and 100 

white tiles, respectively), students used primarily numerical representation, employing 

arithmetical computations to connect both variables. In these questions, the use of 

arithmetical computations to connect both variables makes sense, since students were 

being asked about specific values. T09, T11, and T22, in contrast, used natural language 

to generalize the answer in Q5. All three students generalized when asked explicitly to 

do so. These students’ use of natural language is consistent with results reported by 
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Radford (2018), who found that natural language is a useful vehicle for expressing 

general rules, as well as a useful scaffold for development of more symbolic 

representations. We conclude that the third graders who provided evidence of 

relationships between variables in specific values lacked the resources needed to 

express the generalization, a finding consistent with results reported by Blanton, 

Brizuela et al. (2015). These students were consistent in perceiving numerical regularity 

among variables in Q1-Q4 (their words reveal the general rule), but they could not 

answer when were asked for the general relationship for any number (Q5). This 

difference result may explain why only three students generalized. 

Of the 11 third graders considered, only two used pictorial representation (T19 

and T24), and only one (T03) used manipulative. Apparently, this group of students did 

not find either white and grey square tile papers or pictorial representation to be useful 

in finding the relationships between the variables in the problems. In contrast to 

previous studies (e.g., Cooper & Warren, 2008; Moss & MacNab, 2011), and in 

accordance with our findings, neither type of representation enabled students to connect 

the relationship between the variables to identify the covarying quantities.  

Fifth graders 

Nineteen of the 24 fifth graders provided evidence of a functional relationship; all of 

these generalized the relationship involved in the tiles problem (y=2x+6). The following 

describes the work of these students. 

Functional representations. Correspondence was the only type of functional 

relationship identified in the students’ responses. Table 6 shows the questions in which 

we identified this relationship, by individual question. 
Table 6. Correspondence evidenced by Fifth Graders in Each Question 
 
Student 

Questions 
Q1 Q2 Q3 Q4 Q5 

 F01   ü   ü ü* 
 F02   ü ü ü ü* 
 F03   ü ü ü ü* 
 F04         ü* 
 F05 ü*       ü* 
 F06 ü* ü*     ü* 
 F07   ü   ü ü* 
 F08 ü*       ü* 
 F09         ü* 
 F10       ü ü* 
 F11   ü   ü ü* 
 F12       ü ü* 
 F13   ü   ü ü* 
 F14   ü ü ü ü* 
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 F17    ü ü ü* 
 F21   ü ü ü ü* 
 F22     ü ü ü* 
 F23 ü ü ü ü ü* 
 F24 ü ü ü ü ü* 
Note. F = fifth graders; Q = questions; * = generalization  

As Table 6 shows, evidence of students’ generalization was found in responses to Q1, 

Q2, and Q5. Sixteen students only generalized when answering Q5, and three students 

generalized when answering questions involving specific values and the general case 

(F05, F06, and F08). The following describes the work both of students who only 

generalized when answering Q5 and of those who did so when answering different 

questions. 

The 16 students who generalized only when prompted (in Q5) expressed the 

general relationship between value pairs (correspondence). In their responses to Q1-Q4, 

this group of students found the relationship between white and grey tiles based on the 

specific demands of the questions. When explicitly asked to find the general 

relationship for any value, they generalized. Figure 8 presents F01’s answers to Q2-Q5, 

which we deem representative of these students. 

Q2 (8 white tiles) 22 grey tiles are needed because if you multiply the white 
tiles by two and add three at the beginning and the end, 
you get the result. 

Q3 (10 white tiles) 26 grey tiles are needed because if you multiply the white 
tiles by two and add three at the beginning and the end, 
you get the result. 

Q4 (100 white tiles) 206 tiles are needed, because you multiply the tiles 100x2 
plus 6 to the right and left. 

Q5 (general case) Multiplying the number of white tiles by 2 and adding 6 
gives you the result. 

Figure 8. F01’s answer to Q5 

Figure 8 shows that F01 detected the regularity from her responses to Q2-Q4, using the 

same relationships: multiplying the number of white tiles by two and adding three to the 

right and three to the left. This student used the same functional relationship for 8, 10, 

and 100 tiles (Q2, Q3 and Q4). In all three cases, she related the value pairs (a, f(a)), 

finding the number of grey tiles needed for a=8, 10, and 100 to be 22, 26, and 206, 

respectively. Apparently, she generalized her responses to Q2-Q4 but did not give the 

general relationship because it was not requested.  
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Of the 16 students who generalized when prompted, 12 expressed the 

generalization in terms of a rule that would yield the function y=2x+6 in algebraic 

notation (e.g., F01’s answer in Figure 8). The other four students generalized the rule 

determining the relationship between white and grey tiles incorrectly. Figure 9 shows 

two students’ responses to Q5. 

F12 F21 

Multiplying the top row by 2 and the 

bottom row + 2. 

Well, since the grey tiles surround the white 

tiles (...), you multiply [the white ones] by 2 

and add 2 to the right and left. 

Figure 9. F12’s and F21’s answers to Q5  

Both students correctly identified the relationship “twice the number of white tiles” but 

failed to identify the constant part of the function. These students understood that the 

number of grey tiles remained constant regardless of the number of white tiles (although 

this number is incorrect). 

 As shown in Table 6, three students generalized in different questions on the 

worksheet. Figure 10 depicts F06’s responses to Q1 and Q5. 

Q1 (5 white tiles) They need 16 tiles.  
There are two grey tiles for every white tile except on the 
sides, where there are 5. Or all the tiles Í2 + 6 on the 
sides. 

Q5 (general case) Multiplying the number of white tiles times 2 and adding 
6. 
x Í 2 + 6 = x 

Figure 10. F06’s answers 

F06 generalized in the question that explicitly asked for this relationship (Q5), as well 

as in the question that asked for the relationship for a specific value (Q1). In contrast to 

the third graders who generalized, these answers show that fifth graders generalize 

without following a worksheet designed for this purpose, in line with similar findings 

from other studies (e.g., Amit & Neria, 2007). 

Representations. Table 7 presents the representations used by fifth graders to 

express the relationships in each question. 
Table 7. Types of Representation used by Students to express Functional Relationships 
 
Student 

Questions 
Q1 Q2 Q3 Q4 Q5 

 F01   NL; N   N NL; A* 
 F02   NL NL NL NL* 
 F03   NL NL NL NL* 
 F04         NL* 



 19 

 F05 A*        NL* 
 F06 NL* NL*     NL; A* 
 F07   NL   NL NL* 
 F08 A*       NL* 
 F09        NL* 
 F10       N NL* 
 F11   NL; N   N NL* 
 F12       NL NL* 
 F13   NL; N   N NL* 
 F14   NL NL NL NL* 
 F17    NL NL NL* 
 F21   NL N NL NL* 
 F22     NL N NL* 
 F23 N N N N NL* 
 F24 N; NL N N N NL* 
Note. F = fifth graders; Q = questions; * = generalization; A= Algebraic notation; 
NL=natural language; N=numerical.  

Three main findings emerge from the data presented in Table 7. Firstly, and as in the 

case of the third graders reported here, natural language is the most frequent 

representation used to generalize. Figure 11 shows different students’ generalizations 

expressed through natural language. 

F02 F03 F06 

Multiplying the white tiles 

and adding 6, which are 

those on the left and right. 

Multiplying the white tiles by 

two and adding the three at the 

beginning and 3 at the end. 

Multiplying the white tiles by 

2 plus 6 on the right and left. 

 

Figure 11. Examples of students’ generalizations using natural language 

As Figure 11 shows, F02 and F03 use only natural language to express the general 

relationship between the variables, while F06 uses this type of representation and 

algebraic notation (each of these types of representations expresses the general rule by 

itself). The group of students who generalized using natural language related both 

variables clearly: they multiplied the number of white tiles by 2 and added 6 (e.g., F02’s 

answer) or 3 + 3 (F03’s answer), which corresponds to the constant number of grey 

tiles. This group’s level of sophistication in generalization is similar to that of the third 

graders, except that the fifth graders explicitly referred to “multiplication” whereas the 

third graders referred to repeated addition. It seems that fifth graders’ prior knowledge 

of multiplication could help them to find the general relationship. 

Secondly, four students use algebraic notation spontaneously: F01, F05, F06, 

and F08. Even though this type of representation has not yet been introduced in class, 
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everything seems to indicate that they have been instructed externally to use such 

representation. For instance, two of the students who generalized answering question 

that involve specific value, used algebraic notation. We present F05’s answer to Q1 

(five white tiles) in Figure 12.  

Q1 (5 white tiles) They need 16 tiles.  

I found the answer with this formula: (x+2)+6=16 

x = number of white tiles 

Figure 12. F05’s answer to Q1 

F05’s answer shows that she can relate the pairs of values (number of white and grey 

tiles) for any number of white tiles. We thus find that fifth graders’ use of algebraic 

notation is related directly to the presence of spontaneous generalization (in terms of 

Pinto & Cañadas, 2018): students who generalized in this way used algebraic notation.  

Conclusions 

This paper sheds light on what and how intermediate and upper-level elementary school 

students generalize when answering a functional thinking task. Various initiatives 

currently promote the idea of incorporating functional thinking in the early grades, 

where generalization is a crucial element. Because the adoption of algebraic ideas in 

elementary school is relatively recent, however, many issues relating to their 

incorporation remain to be considered. More specifically, our findings illuminate the 

idea that incorporating functional thinking in the elementary grades: (a) could 

encourage students to develop strategies of inquiry (Yerushalmy, 2000); (b) provide a 

useful context to promote students’ generalization, representation, justification, and 

reasoning with relations and quantities (Blanton et al., 2011); (c) be a useful tool for 

solving problems (Warren & Cooper, 2005); and (d) prepare students for more powerful 

mathematics in later years (Blanton & Kaput, 2005).  

An increasing number of studies report elementary school students’ 

generalization with problems involving different types of linear functions (e.g., Blanton, 

Brizuela et al., 2015; Carraher, Martinez, & Schliemann, 2008; Cooper & Warren, 

2011; Morales et al., 2018). These studies illuminate how students relate, express, and 

generalize relation among variables. Our study’s originality lies in providing an in-

depth way to describe students’ work, without prior instruction: (a) relating variables 

and expressing these relationships rather than performing isolated computation; and (b) 

answering questions involving specific values and generalization. Our study also 

contributes to deepening knowledge, and providing detailed evidence, of how the 
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mathematical representations introduced throughout elementary school are useful to 

relate variables based on the specific requirements of the task. Previous research has 

identified criteria for analyzing elementary school students’ generalization of functional 

thinking problems. Carraher et al. (2008), for instance, emphasize: (a) the form of the 

underlying mathematical function, which could relate both variables involved in the 

task or only one of them; (b) the variables mentioned; (c) the types of arithmetic 

computation used; (d) the use or otherwise of symbolic-algebraic notation; and (e) the 

meanings of the components of the written expression. Our study adds three more: (a) 

the relationship between variables identified by students; (b) the variety of 

representations used in addition to algebraic notation; and (c) the type of question in 

which students generalized (spontaneous or prompted generalization, in the terms of 

Pinto & Cañadas, 2018).  

As described above, students in both groups were not used to working with 

situations that involve generalizing. As in reports by other authors (e.g., Carraher et al., 

2008), however, these students’ prior mathematical experiences seem to have 

influenced how they attend to and relate covarying quantities, and how they perceive 

general rules. These findings could explain why most fifth grade students generalized, 

while the third graders did not. The third-grade students tended to focus on specific 

values (which involved the numbers 5, 8, and 10). As the arithmetical computations 

enabled the third graders to answer the first questions we asked them, these students did 

not see the need to find the relationship between the variables mentioned. In addition, 

our findings help us to demonstrate that incorporating functions in the elementary 

school classroom “can enrich many arithmetic activities by prompting students to make 

generalizations and relate the tasks to abstract ideas and concepts” (Carraher & 

Schliemann, 2019, p. 12). Introducing this content during elementary school could also 

reduce possible difficulties post-elementary students encounter when they work with 

functions (Cañadas & Molina, 2016; Stephens, Ellis, Blanton, & Brizuela, 2017). 

The tiles problem was specifically designed to promote functional thinking in 

elementary students. We stress the importance of problem design for three reasons. 

First, it enables students to use different procedures when answering the questions 

involving specific values until they are able to generalize. Second, the introduction of 

pictorial or manipulative representations in students’ work with functional thinking 

tasks could help students to understand the dynamic relationships between variables and 

thus serve as a first step to start students thinking about covarying quantities. Finally, 



 22 

the tiles problem helps researchers identify the elements of generalization and 

functional thinking that can be deduced from elementary school students’ spontaneous 

replies. Such deduction should lead to useful conclusions for teaching, as these elements 

are present in a number of countries’ Mathematics curriculums (Ministerio de 

Educación, Cultura y Ciencia, 2014). The findings discussed support students’ ability to 

define a general rule, albeit incorrectly on occasion. Some of the difficulties students 

faced when trying to establish a rule for the relationship between variables stem from a 

mistaken notion of the variables’ interchangeability. While acknowledging that 

generalization is not simple and requires time (Dienes, 1961), we consider that learning 

sequences must be designed to guide students to a general rule that is valid for different 

specific values, while working with different types of mathematical representation. 

 The analysis of the students’ written responses could be one limitation of this 

study, as the worksheets may not capture all of the students’ ideas. Yet these situations 

open a new perspective that calls for future research to investigate in greater depth the 

means students have to relate variables and express these relationships. Interviews could 

be a useful way to achieve this goal. 
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