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NOTE FOR THE THIRD HILBERT PROBLEM: A
FRACTAL CONSTRUCTION
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ABSTRACT. Hilbert’s Third problem questioned whether, given two
polyhedrons with the same volume, it is possible to decompose the
first one into a finite number of polyhedral parts that can be put to-
gether to yield the second one. This finite equidecomposition process
had already been shown to be possible between polygons of the same
area. Dehn solved the problem by showing that a regular tetrahedron
and a cube with equal volume were not equidecomposable. In this
paper, we present an infinite fractal process that allows the cube to
be visually reconstructed from a tetrahedron with equal volume. We
have proved that, given two tetrahedrons with the same volume, the
first one can be decomposed into an infinite number of polyhedral parts
that can be put together to yield the second one. This process makes it
possible to obtain the volume of a tetrahedron from the volume of the

parallelepiped, without the use of formulas or the Cavallieri Principle.

1. INTRODUCTION

In 1900, Hilbert proposed 23 problems that opened research lines in
different branches of Mathematics [8]. Some of these yet unsolved problems
remain as a challenge for current mathematicians. On the other hand, the
Third problem was solved before Hilbert’s lecture was delivered [3]. How-

ever, the interest on this matter remains.

In particular, the Third problem, in which prestigious mathematicians
such as Gauss had already shown interest [6], stated that given two polyhe-
drons with the same volume, it is possible to decompose the first one into
a finite number of polyhedral parts that can be put together to yield the
second one. Dehn, [2], one of Hilbert’s students, provided a negative answer
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to this problem and proved that a regular tetrahedron and a cube with the
same volume are not equidecomposable. In other words, the former cannot
be decomposed into finitely many polyhedral pieces that can be put together
to obtain the latter. The main idea behind Dehn’s proof was to define an
invariant that remains unchanged in the process of decomposition into finite
polyhedral pieces, and to show that the cube and the regular tetrahedron
had different values of the invariant. In 1965, Sydler, [6], proved that two
polyhedra are equidecomposable if and only if they have the same volume

and the same Dehn invariant.

The above highlights the difference between the Euclidean plane and the
Euclidean space, as the Wallace-Bolyai-Gerwein theorem |[1]| states: Poly-
gons are equidecomposable if and only if they have the same area. Theile [7]
has suggested that on Hilbert’s view, the need of infinite processes could
contradict the metaphysical principle that the Universe is governed in such
a way that a maximum of simplicity and perfection is done. However, infi-
nite processes can also result of great simplicity and perfection, as happens
with fractals, which exhibit approximations to infinity of great beauty and

mathematical regularity [5].

In this paper we describe an infinite fractal process to decompose a reg-
ular tetrahedron into infinite pieces that can be put together to form a cube
of the same volume. The process is repeated successively in different scales

showing a fractal nature.

This process is generalizable to any tetrahedron, obtaining an origi-
nal visual demonstration of an “infinite” version of the Third problem for
tetrahedrons: given two tetrahedrons with the same volume, it is possible to
decompose the first one into a finite number of polyhedral parts that can be
put together to yield the second one.

To ease the visual comprehension of this process without resorting to
the use of formulas of volumes or the Cavalieri principle, the decomposi-
tion of a particular tetrahedron, the trirectangular tetrahedron, is initially

shown. Subsequently the generalization to any tetrahedron is presented.
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Before the main results we introducing some concepts and notations in

order to clarify the paper.

2. CONCEPTS AND NOTATIONS

e A trirectangular tetrahedron is a tetrahedron with all three faces
angles at one vertex are right angles. The three edges that meet at
the right angle of a trirectangular tetrahedron are called legs.

e (, denotes a cube of edge length n.

e T, denotes a trirectangular tetrahedron of equal legs of length n.

e P, denotes the regular tetrahedron obtained by joining four of the 8
vertices of the cube C),. More specifically, picking every other vertex
of a cube so that no two are joined by an edges but any pair is joined
by a diagonal of the cube’s face we can form a regular tetrahedron.

3. MAIN RESULT

Lemma 3.1. A Fractal Decomposition of a trirectangular tetrahedron in a

cube is possible.

Proof. The three diagonals of the faces of a cube that meet in a vertex
comprise a trihedron angle which is the tip of a regular tetrahedron. By
joining the other vertices of these diagonals with those from the other sides
of the cube, we obtain a tetrahedron with equal angles and legs of the same
length, the diagonal of the face of the cube C1, therefore it is a regular
tetrahedron P; (Figure 1). O

FIGURE 1. Regular tetrahedron P; within the cube C].

Outside the tetrahedron there remain four identical figures, namely tri-
angular pyramids, with 3 faces comprising rectangular and isosceles trian-
gles and one face comprising an equilateral triangle (the face of the tetra-
hedron). So, C; is decomposed in four trirectangular tetrahedrons 77, and
a tetrahedron P; (Figure 2).
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FIGURE 2. Decomposition of Cy in P; and four T3.

We start the fractal decomposition of the trirectangular tetrahedron
Ti. In order to determine the portion of the cube occupied by T3, we
will truncate it by means of half-planes parallel to one of its bases. A
new trirectangular tetrahedron then appears, T1, in the upper part of the
truncated one (Figure 3a). Letting such T% rotQate (Figure 3b), with axis
equal to the cutting line between the plane and the equilateral face we

obtain three pieces: a cube C1 and two T adhered to it (Figures 3c, 3d).
2 2

(c) Step 3

FIGURE 3. From left to right, top to bottom: Truncation of
T, to obtain one cube C'1 and two 1.
2 2

Repeating the truncation process for 71, two cubes C1 and four new
2 4

Ti are obtained (Figure 4).
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FIGURE 4. Truncation of the two T:.
2

This process can be successively iterated as it is shown in Figure 5

obtaining a series of cubes and trirectangular tetrahedrons that can be
summarized in Figure 6.
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(A) Truncation of the 8 T1. (B) Recurrent process

FIGURE 5. Recurrent process of the truncation.
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FIGURE 6. Number of trirectangular tetrahedrons and
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By conveniently placing these cubes above half of the original cube, we
obtain a sequence from which two views are shown (perspective and lateral)
in Figures 7a-7b.

According to Nelsen’s in [4], and by comparing quantities, the sum of
the surface quantities of the square faces is equal to one-third of the surface
quantity of the square (Figure 7c).

(A) Figure 7a (B) Figure 7b
(c) Figure Tc (D) Figure 7d

FIGURE 7. From left to right, top to bottom: location of
the cubes in the truncation in order to obtain the volume.

1
We also note that this follows from the geometric series of ratio 1 and
SO
4) 3

n=1

This comparison allows us to say that the sum of the volume magni-

1
first term 1 and

tudes of all the cubes in which we decomposed T3 is one-third of half of the
cube.

A new placement of these cubes (Figure 7d) divided into three pieces

allows the construction of a prism of equal height of 77 and rectangular

base of dimensions of the base 3 and ok To do so, each square of Figure
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7c is divided into three equal rectangles. Two of them are left together and
the third is placed on the first of those mentioned previously, as it can be

perceived in the recursive process of Figure 7c.

Visualizing this construction in perspective as it is shown in Figure 7a,
1
it is perceived that 717 has decomposed into a right prism of — of the volume

of C1. As any two given prisms of equal volume are equidecomposable [1],
we have proved the following result.

Proposition 3.2. T} has been decomposed into an infinite fractal process

1
into a prism of which the volume is 5 the volume of the cube with its same
edge (Figure 8).

N
Nl o8

FIGURE 8. Equidecomposition from Ttri to a cube.

Now we can generalize the result for any tetrahedron.

Theorem 3.3. A fractal decomposition of a tetrahedron in a cube is possi-
ble.

Proof. The above fractal process is generalizable to any tetrahedron. We
show with images the sequence of steps. The only difference is that in the
truncation process it is necessary to perform a symmetry (Figures 9-10). O

b
- v
b 8L/
(A) Step 1 (B) Step 2

FIGURE 9. Fractal process: Steps 1 and 2.
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(1) Step 11 (3) Step 12

F1GURE 10. Fractal process: Steps 3 to 12.

As in the T} case, these parallelepipeds divided into three pieces can be
repositioned to obtain a new parallelepiped of volume 1/6 of the original

parallelepiped.
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Finally, by equidecomposition of prisms of equal volume, we obtain a
cube of equal volume to the original tetrahedron, and therefore of volume
equal to 1/6 of the parallelepiped that contains the original tetrahedron.
Therefore, we can formulate the following result:

Theorem 3.4. Given two tetrahedra of equal volume, it is possible to de-
compose the first one into an infinite number of polyhedral pieces that can

be put together so as to yield the second one.

Proof. The proof is based on decomposing the first tetrahedron into a prism
with volume 1/6 of the parallelepiped and then repeating the reverse process
to reconstruct the other tetrahedron. Furthermore, as a consequence of this
process, what is obtained is that the volume of a tetrahedron is 1/6 of
the parallelepiped that contains it. An infinite process has been necessary,
but neither the formulas nor the Cavalieri Principle have been used. This
construction can also be used for the case of the regular square pyramids,

because they can be decomposed in 4 T} (Figure 11). O

FIGURE 11. Regular square pyramid (left) and comprising
four trirectangular tetrahedrons (right).

As pointed out by the Dehn Theorem answering to Hilbert’s problem,
the comparison of the volume of a pyramid requires an infinite process. The
explained procedure makes an iterative comparison based on self-similarity,
which allows to obtain the ratio between the volumes of the tetrahedron
and the regular square pyramid, and between both and the cube.
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