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Resumo

O conhecimento matemitico de criangas e adultos parece entrar em crise com freqiiéncia
— crise de habilidade ou de criatividade. Embora cauteloso quanto a solugdes universais,
este artigo sugere, como uma saida para esse impasse, a inclusio, no curriculo, de ativi-
dades computacionais planejadas para auxiliar os alunos a associar seu conhecimento
informal as préticas convencionais da matemarica.
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Abstract

Children’s and adults’ mathematical knowledge frequently appears to be in a state of crisis - a crisis
of skills or a crisis of creativity. While cautioning against universal solutions, this paper suggests
that the incorporation into the curriculum of computer-based activities designed to help students
connect their informal knowledge with the conventional practices of mathematics is one way out of
this impasse.

Key words: mathematics curriculum, computer in mathematic education.

BACKGROUND

Children’s and adults’ mathematical knowledge frequently appears
to be in a state of crisis — a crisis of skills or a crisis of creativity. In UK and
USA, there are now waves of enthusiasm for basic skills, mental arithmetic,
and target setting. A huge multi-million pound National Numeracy
project is now underway in UK and we await the final publication of our
Government’s Numeracy Task Force. In its preliminary report, Numeracy
Matters, 1998), the TIMSS studies (see for example, Harris, Keys &
Fernandes, 1997) were cited as one reason for this new focus.

Studies comparing England’s performance in mathematics with
other countries show this country to be performing relatively poorly in
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comparison with others. For example, evidence from the Third
International Mathematics and Science Survey (TIMSS) indicates that
our Year 5 pupils (aged 9 and 10) are amongst the lowest performers in
key areas of number out of nine countries with similar social and cultural
backgrounds. (p. 8)

At the same time, the news from the Pacific Rim reports rather
different pressures for change. For example, Lew, (in press) describes Korea,
a country which scores very highly on most international comparisons of
mathematics attainment, as being in “total crisis” in mathematics. He
illustrates graphically how most students seem quite unable to relate
their well-developed manipulative skills to the real world. Lew argues
that ‘the direction of the mathematics curriculum in Korea should change
from emphasis on computational skills and the ‘snapshot’ application of
fragmentary knowledge to emphasis on problem-solving and thinking
abilities’. Similarly, Lin and Tsao present a picture of test obsession in
Taiwan where college entrance examinations dominate students’ (and
parents’) lives (Lin and Tsao, in press). Both of these countries are planning
to encourage more ‘open’ curricula to include opportunities for
mathematical creativity: that is, adapt their curricula to be more like
those now being vilified in UK and USA!

Other data from TIMSS suggest that English children are
comparatively successful at applying mathematical procedures to solve
practical problems and are generally positive about mathematics. Is it
possible to retain these strengths while at the same time consolidating
arithmetic skills and developing the ability to construct rigorous and
systematic arguments? (The latter area is one in which we have shown
out students to be surprisingly weak - see Healy and Hoyles, 1998). The
challenge for the international mathematics education community perhaps
appears at first sight to be the design of a globally-effective balanced
curriculum. From a UK perspective, this would build on the wealth of
informal mathematical knowledge students bring to school, while at the
same time drawing their attention to mathematical structures and
properties and introducing them more systematically to mathematical
vocabulary. The mathematical curriculum of the next millennium should
harness children’s motivation without losing their mathematics - and we

envisage that the computer might offer just the context to help us to do
this.
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A ROLE FOR THE COMPUTER

I was inspired in the early 80’s by Seymour Papert’s radical vision
of 2 mathematics that was playful and accessible, but at the same time
rigorous and serious. We' dreamed (and still do!) of children actively
expressing mathematics in different ways. We wanted children to learn
by conjecture, reflection on feedback and debugging, as part of their
own meaningful projects that required planning, sustained engagement
with mathematical ideas and the bringing together of a range of skills
and competencies. Logo was the vehicle or the catalyst for many of us to
try to achieve those dreams. In doing this work, our eyes were opened to
students’ strategies and potentials - computer interaction was a window
on to possibilities, an environment to illuminate pupil meanings and
interpretations (Hoyles 1985, Noss and Hoyles, 1996).

Since thart time, we have designed a range of microworlds around
different ‘open’ software and have further developed the notion of technology
as 2 means by which knowledge can be concretised and connected. We
have also undertaken more systematic investigation of the nature of the
child’s activity and how it can be better understood and guided (Hoyles
and Noss, 1992). Inevitably the boundary of what is and is not mathematics
has been explored (see Papert, 1992): some say that working experimentally
with the computer is mathematics, some that it is not, and many are not
sure. The software may have changed but the issues have not and the
location of this boundary is still 2 matter of hot dispute, brought even more
into focus in an international forum such as this.

If we want to design investigative environments with computers
that will challenge-and motivate children mathematically, we need software
where children have some freedom to express their own ideas, but in
ways constrained so as to focus their attention on mathematics. Are there
lessons to be learned from all the work that has been done with these
sorts of environments over several decades? What do we actually know
about how children can better learn mathematics with technology?

Mathematics comprises a web of interconnected concepts and
representations which must be mastered to achieve proficiency in

1 We, in this tex, refers to my close colleague in Mathematical Sciences at the Institute
of Education, Richard Noss.
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calculation and comprehension of structures (for elaboration of this
theoretical framework, see Noss and Hoyles, 1996). Mathematical
meanings derive from connections - intramathematical connections which
link new mathematical knowledge with old, shaping it into a part of the
mathematical system; and extra-mathematical meaning derived from
contexts and settings which may include the experiential world. Yet how
are these meanings to be constructed? How is the learner to make these
connections? To what extent can the software tools encourage this process
of meaning-making and connection-making?

A critical weakness of many mathematical learning situations has
been the gap between action and expression and the lack of connection
between different modes of expression. Does technology magnify these
problems of fragmentation and lack of connection or help to solve them?
Clearly it depends how the technology is used; 2 lesson certainly worth
reiterating! Technology does nothing in and of itself! Over many years,
our central research priority has been to find ways to help students build
links between seeing, doing and expressing (see for example, Noss, Healy
& Hoyles, 1997). We have shown that technology can change pupils’
experience of mathematics but with several provisos: the users of the
technology, (teachers and students), must appreciate what they wish to
accomplish and how the technology might help them; the technology
itself must be carefully integrated into the curriculum and not simply
added on to it (see Healy and Hoyles, in press), and most crucial of all,
the focus of all the activity is kept unswervingly on mathematical
knowledge and 7oz on the hardware or sofrware.

COMPUTERS AND THE CURRICULUM

To date, work with computers in mathematics education has largely
been concerned with construction and the potential of software to aid
the transition from particular to general cases - specific instances can be
easily varied by direct manipulation or text-based commands and the
results ‘seen’ on the computer screen (see, for example, Laborde and
Laborde, 1995). Yet, even if students develop a sense of how certain ‘inputs’
lead to certain results, there remains the question of how to develop a
need to explain, a need to prove, as part of, rather than added on to, this
constructive process. In countries like UK, where proof has all but
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disappeared from the curriculum, this issue must be addressed urgently
if we are to avoid limiting the mathematical work for most children by
the introduction of computers. If we fail, the majority of our students
will simply be subjected to even more convincing empirical argument -
for example, using powerful dynamic geometry tools simply to measure,
spot patterns, and generate data.

There is an alternative which we are in the process of investigating.
We have designed activities where, through computer construction,
students have to attend to mathematical relationships and in so doing
are provided with a rationale for their necessity. Thus, the scenario we
envisage is one where students construct mathematical objects for
themselves on the computer, conjecture about the relationships between
them, and check the truth of their conjectures with the tools available.
This forms part of a teaching sequence which also includes reflection
away from the computer guided by the teacher, and the introduction of
mathematical proof as a particular way of expressing one’s convictions
and communicating them to others. It is in this way, we suggest, that
constructing and proving can be brought together in ways simply not
possible without an appropriate technology: formal proof is simply be
one facet of a proving culture, revitalised by the ‘experimental realism’ of
the computer work (Balacheff and Kaput, 1996).

Over the last few years. Lulu Healy® and I have devised algebra and
geometry teaching sequences which follow these criteria. Our activities
were developed after analysing students’ responses to a nationwide
paper-and-pencil survey to assess students’ conceptions of proving and proof
(Healy and Hoyles, 1998). This questionnaire was completed by 2,459
fifteen year-old students of above average mathematical attainment from
across England and Wales. Each teaching sequence was designed ‘to fit
into the curriculum’ and to plug at least some of the gaps our survey had
revealed in the understandings of our students. Overall 18 students from
three schools have worked through the sequences, each of which took nearly
5 hours of classroom contact supplemented by homework.

I'will now present snapshots from the case studies of two students
who engaged in these sequences. The first case study illustrates the gains

2 ESRC project, Justifying and Proving in School Mathematics, Ref R000236178. I wish to
acknowledge the central work of Lulu Healy in all aspects of this project.
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that can be made by connecting skills to creative exploration through
computer interaction; the second points to potential pitfalls in planning
‘the best’ mathematics curriculum incorporating technology.

TIM: MAKING THE STEP TO EXPLAINING IN ALGEBRA

Tim was a quiet and diligent student who knew about proof as
something that involved verification and explanation, only recognised it in
the context of algebra — a natural consequence of our curriculum with its
emphasis on generalising and explaining number patterns (see Figure 1).

Figure 1: Tim’s initial view of proof

It was also clear from Tim’s choices in the questionnaire, that he
had a preference for visual argumentation: he evaluated the visual ‘proof
by Yvonne in exactly the same way as a ‘correct’ formal algebra proof,
and when asked about this, it was clear he ‘saw’ the general structure
through this particular visual example (see Figure 2).
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Yvonne's answer

ceceet ceee

So Yvonne says it’s true.

Yvonne's answer agree don't know disagree
Has a mistake in it 1 2 ©)
Shows that the statement is always true 2 3
Only show that the statement is true for some even numbers 1 2 @
Shows you why the statement is true 2 3

Is an easy way to explain to someone in your class who is unsure 2 3

Figure 2: Tim’s evaluation of a visual proof

In the first algebra session of our teaching sequence, students are
introduced to our microworld, Expressor, in which they build ‘matchstick’
patterns of number sequences by constructing simple programs. They
are encouraged to connect their computer constructions with
corresponding mathematical properties, and find a general formula for
the number sequence explaining why any conjecture is true or false by
reference to computer feedback #zd to the mathematical structures they
have constructed. Similar work with more complex number sequences is
undertaken in the third session.

Tim found this work of generalising through programming both
engaging and challenging — in fact, he described it as the most enjoyable

parts of our teaching. He also saw a strong connection between proving
and his computer work.

T —Iliked the programming stuff — that helped [to write proofs}
because it sort of showed how it was constructed so... It helped
prove because it showed you how they were made... How that
construction was made step by step.
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In the second session, students are introduced to writing formal
algebraic proofs and helped to ‘translate’ their Logo descriptions of the
mathematics structures into algebra. They are also taught how to construct
deductive chains of argument; systematically to start from the properties
they had used in their constructions and to deduce further properties.
Both of these activities are unfamiliar to UK students.

Let me give an example. Students are asked to investigate the
properties of the sums of different sets of consecutive numbers. They
construct by programming a visual representation of numbers as columns
of dots (shown in Figure 3 below). Students can for example move the
bottom right dot to the bottom left, see that it would ‘even up’ the three
columns, and convince themselves that the conjecture that the sum of 3
consecutive numbers is divisible by 3 is always true.

Although these moves can be achieved by, for example, using
counters, in Expressor, the visual arrangement has a simultaneous ‘algebraic’
description which is constructed by the children. In Fig. 3 a program
col, has been written to generate 6 (nn), 7 and 8 columns. The dots can
be dragged into columns as with real counters; but as this is done, a
recorded ‘history’ of the actions is stored (see the history box in Figure
3) in the form of fragments of computer program. This code is executable:
that is, it can be ‘run’ to produce the output (or part of the output) which
produced it. There is, therefore, a duality between the code and the
graphical output of the dots; the action (on the dots) to produce 2 new
visual arrangement and the expression (in the form of pieces of program)
are essentially interchangeable and the code is a rigorous description of
the student’s action to construct a particular image, and her actions are
executable as computer programs. A box n is used to store the smallest
of the three numbers and our student might see that what is in the box n

hardly matters, and therefore that the theorem is independent of the first
number.
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Figure 3: A typical Expressor screen to explore the sum of 3 consecutive numbers

How did Tim cope with this activity? In his first session, he had
been seeking explanations for a general rule in the general symbolic
expressions he had constructed (in the form of programs). He constructed
his three columns of dots in Expressor and was faced with a screen rather
like Figure 3. Then he wrote: z+(z+ 1)+ (n +2) = 3n+3.

But, he obtained this equivalence 7oz a result of a manipulating
algebra but by reference to our microworld to 3 columns of length and 2
‘tail’ of 3. He then argued correctly as his proof that the sum of 3
consecutive numbers always had a factor of 3: “if you add 3 to any factor
of 3, then it is still a factor of 3” (he used factor instead of multiple
throughout!). Tim generalised this method to find factors of sums of
different numbers of consecutive numbers - always considering columns
of dots and a tail, but flexibly using his visual argumentation. For example,
to show that it was impossible for the sum of 4 consecutive numbers to
have a factor of 4 and so could never add up to 44, he visually moved
dots, as he described in Figure 4:
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If you think yes, then find these 4 numbers then go to b.
If you think no, go straight to b.

- Either write down these 4 numbers or explain why it cannot be done.
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Figure 4: Tim's proof that the sum of 4 consecutive numbers is not divisible by 4

Finally together with his partner, Tim also came up with a brilliant
inductive. visual ‘proof that the sum of 5 consecutive numbers had a
factor of 5, again using visual reasoning but in yet another way

(see Figure 5).

e. Choose one property and write a formal proof to show how this can be deduced.

"!{— n=0
TULY o i — ke oA S
A R

Pigure 5: Tim's inductive Proof
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By this time it was clear that Tim had found two ways to explain
which seemed to be well connected: constructing symbolic code and
manipulating visual expressions. His explanations came from linking
logical and general arguments with visual representations (columns of
dots) - and not from algebra, even though he clearly recognised its
importance. This gap in his repertoire of skills is well illustrated in his
final homework (Figure 6). Tim creatively generalised ‘the dots
microworld’ into thinking of multiplication as a rectangular array of dots,
whose rows could be paired off leaving ‘one left over’. But, he was still
unable to multiply out brackets correctly!

18. Prove whether the following statement is true or false:

When you multiply any 2 odd numbers, the answer is always odd.
Arve

9000

Qooe

)

s

0 a @)~ One L“— °vv/”,u)

X= EVean

!

(o) o (anl) = x5 (odd]

Figure 6: Tim's two explanations
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SUSIE: AN INAPPROPRIATE INTERVENTION IN ALGEBRA?

In contrast to Tim, Susie could say nothing about what proof was
about and was clearly confused about the generality of 2 mathematical
argument. She selected empirical arguments as her own approach in all
the multiple-choice ‘proofs’ in our survey, in geometry and in algebra,
and described these as both general and explanatory. She thought
mathematics was quite complicated and, in fact, admitted to hating it.
Although Susie offered no description of proof or its purposes, it emerged
in interview and watching her computer work that she did have 2 view
about proof - it was about examples (many examples)! It was enough to
have shown a statement was true many times! Additionally, for Susie,
there was another important aspect of proof which was a rule or formula.
But, its role was to obtain more marks from the teacher rather than to
confer generality - the examples were enough for this.

Although Susie could write formal proofs, she did not see them as
general and found them no more convincing than empirical evidence - her
two ‘modes of proving’- examples and formal proofs - apparently completely
disconnected. She believed for example that even after producing a valid
proof that the sum of two even numbers is even, more examples would be
needed to check that the statement holds for particular instances.

In our teaching experiments, both in algebra and geometry, we
noticed that Susie followed all the instructions carefully, but rarely if ever
experimented with the computer. She found it hard to see the computer
as means to try things out when unsure, to learn from feedback.

I will illustrate Susie’s work in algebra by reference to the same
activities described earlier. Susie was considering the sum of four
consecutive numbers. She constructed the columns of dots and came up
with the formula, 47 + 6, ostensibly by making the connection of the
‘+6’ with the ‘ail of dots’. For 5 consecutive numbers, she apparently
used the same method to come up with the correct sum of 52 + 10.
Then she changed her mind. She crossed out the +10 explaining this by
writing that she had checked and ‘it was 6’. From this point on, her
written work and explanations were disconnected from any generality
suggested by the visual display she had constructed in the microworld,
except she persisted in showing pictures of columns of dots with 2 6 dot
tall, as illustrated in her homework following this session.
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12, In the last session, you looked for properties associated with summing
consecutive numbers. Write down all the properties you found.
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Figure 7: Susie’s rule for consecutive numbers

We can explain the rupture of connection between particular
examples and generalisations by reflecting on what we had discovered as
Susie’s goal in mathematics - to find examples and then a 7z/e. She had
achieved this: found a rule in which numbers could be substituted and
even had pictures to illustrate it!

I must mention Susie’s story is not completely negative. She did
make progress after engaging in our sequences, By constructing
matchstick patterns, Susie was beginning to appreciate how an algebraic
expression could express generality (and serve merely as something to be
manipulated), and, although proving for Susie remained solidly ‘a rule
plus examples’, she did seem to be beginning 20 want 1o explain as well.

\

SOME SNAPSHOTS FROM THE GEOMETRY SEQUENCE

I will mention briefly some insights we gained from our teaching
sequence in geometry, simply to illustrate further some points raised in
the previous sections. This sequence followed a similar pattern to that in
algebra. In the first session, students are encouraged to construct simple
geometrical objects on the computer with dynamic geometry software,
to describe their constructions, connect each with a corresponding
mathematical property, and use the computer to explore or reject
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conjectures. In the second session, students are encouraged to construct
familiar geometrical objects (parallelograms, rectangles) on the computer,
identify the properties and relations of 2 geometrical figure that had been
used in their constructions and distinguish some properties that might
be deduced from those given by exploring with the computer. In much
the same way as in algebra, students are also taught at this point to
construct logical deductive chains of argument and write formal proofs
based on their computer constructions. In the third session, students are
faced with more unfamiliar constructions and proofs, which again they
can tackle experimentally on the computer.

So how did Tim fare in geometry? Geometry for Tim, as for most
of our students, was far more problematic than algebra. He did make
some progress in that he learnt to write clear descriptions of his
constructions, translate them into given properties and ‘see’ deduced
properties. The compurter work helped Tim ‘see’ relationships and
convinced him of their necessity, but the links he could make berween

constructions and proofs or even explanations were much more tenuous
than in algebra.

T — Well you could actually see like if they were congruent - you
could take however much you were allowed to take and actually
make a triangle. If it was congruent then you could... tell it was.

C — Tell it how?
T — Just by seeing.
C — And did that help you write your formal proofs?

T — Not really - not the formal stuff. — But — well it made it
more enjoyable.

Tim found it hard to appreciate and reproduce ‘the game’ of proving
- that is, systematically to separate givens from deduced properties and
produce reasons for all his steps. He found the language of formal geometry
proofs inhibiting - it stopped him ‘seeing it all’. The construction task in
the third session was important in his progress. He had to construct a
quadrilateral where adjacent angle bisectors were perpendicular and to
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describe and justify its properties. Tim found this hard, but, after much
experimentation and measuring lots of angles, he eventually ‘saw’ the
key relationship - two parallel lines - not be ‘just seeing them’ but by
noticing two equal angles and dragging. The important point is that the
measurements for Tim were not simply collecting empirical evidence,
they were not only part of the conjecture but also and crucially part of his
proof. When he talked about two angles of 44°, it was clear to us that he
was seeing ?hrough the numbers to the general case -just as he had done in
Expressor. As in algebra, Tim was using the computer interaction to help
him to find explanations. '

Susie again presents us with a different picture. When it came to
constructing proofs, Susie’s responses were quite unlike the majority of
students in our survey. Her proofs in geometry were far better than in
algebra and the proof she constructed for the more complex geometry
question, (a standard Euclidean geometry proof), was much better than
almost all the survey students®. Yet we found very little evidence that
Susie made any progress in geometry as a result of undertaking our
teaching sequence. At the start, formal proof was a ritual, disconnected
from any appreciation of the generality of the mathemarical properties
and relationships she used. As in algebra, she believed that even after
proving a statement, its validity had to verified in any specific set of cases
(see also, Chazan, 1993). In our case, Susie was certain that she needed
examples to check that the statement, the sum for the angles of a triangle
is always 180° held for right-angled triangles. The computer interaction
did not seem to help Susie to come to appreciate the generality of a proof
and the proving process. Also, before she started our teaching sequences,
Susie could already construct formal geometry proofs, but only in the
context of familiar and fairly routine problems. Faced with more unfamiliar
situations as that described above, she was lost and, unlike Tim, was
unable to use the computer to help her.

We can throw light on this lack of progress, by reference to two
factors: her interactions with the computer and her interpretation of
feedback. First, as I have mentioned, Susie did not exploit the computer
to test hypotheses or try things out. But the success of our tasks re/ied on

3 She produced na almost perfect formal proof — something only achieve by 4.8% of the
students in the survey and which 62% of students did not even start.
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experimental interaction - we did not expect our students immediately
to know what to do. Second, Susie interpreted the feedback from the
dynamic geometry software in a way which certainly was unexpected.
For her, dragging a Cabri construction was 7oz testing a relationship,
exploring a property - but merely a way of generating many examples.
Once we had noticed this, we could see it was completely consistent with
Susie’s view of proof! Susie’s reflections on the use of the computer in
mathematics are relevant. When interviewed, it was clear that she thought
the computer had given her ideas about ‘what it was all about’ and had
done it quickly. But rather crucially it makes examples and checks them?*.

I have to mention that Susie did change for the better in her
response to mathematics. All through the teaching experiments, Susie
picked the most enjoyable aspect of her mathematical work as ‘finishing
it’, ‘getting it right’, ‘writing down the results’. Yet, in algebra, we were
beginning to catch glimmers of enjoyment and engagement: Susie began
to mention #be activity rather than simply its end point. In her interview
too, she spontaneously said how much she had enjoyed the work the
computer, although it must be admitted this was only as a contrast with
‘normal maths’. Even so, this more positive attitude might be the key to
Susie’s further development. P

DISCUSSION AND CONCLUSION

To begin an explanation of the two very different student responses
to our teaching and the work with computers, we have to consider cultures
and curricula - huge issues beyond the scope of the paper but which
simply cannot be ignored. Susie’s profile is somewhat less ‘odd’ if it is
known that she had only studied mathematics in an English school for
one year - she was in fact from Hong Kong and had been educated there,
although the language of instruction was English. Unlike most other
students in our survey, Susie had been taught formal geometry proofs as
well as algebraic formulae and manipulation and had little experience of
‘doing investigations’.

4 She also thought that the computer helped her to remember, but there was 2
disadvantage ‘you can't use the compurter in exams’!
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As I have tried to show, Susie’s lack of progress might at least
partly be explained by the disjuncture between the assumed starting
points of our activities, particularly those with computers - in terms of
sense of proving and student-computer interaction - and Susie’s world.
We had students like Tim in mind when we designed our sequences;
students reared in an investigative culture - who wanted to explain but
who lacked the tools to do it. Susie was at odds with this culture in terms
of her beliefs about mathematics and about proof. Our activities did not
build on /er existing framework for proof, did not help her to connect her
informal mathematics to our agenda. Our story of Susie provides
compelling evidence that we must take seriously prevailing beliefs about
mathematics and about computers in our curriculum planning, and resist
the temptation to import ‘exemplary activities’ from other cultures.

The comparison of Tim and Susie’s work cautions against any
assumption that the computer will lead to a set of learning outcomes or
bring about particular changes. We can only design optimal activities
within very limited parameters, given that how children interact with
and learn from software depends on their expectations and beliefs.
Curricula must seek to build on student strengths - in the case of UK on
a confidence in conjecturing and arguing - and connect these strengths
to new dimensions. Students like Tim respond positively to the challenge
of attempting more rigorous proof alongside their informal argumentation.
Susie was less successful as the culture which shaped our teaching and
task design was not shared by her.

Clearly, not all of UK students are like Tim or students from Hong
Kong like Susie. But the purpose of elaborating their stories is to guard
against the stupidity of ‘transferring’ curricula simplistically across
cultures, the replacement of a curriculum which over-emphasises an
empirical approach with one in which students are simply ‘trained’ to
write formal proofs. It is all too easy for countries simply to flip between
two states of skill and creativity crisis while attempting to model
curriculum innovations which look so alluring to the distant observer.

So, returning to my initial question about the desirability of a
globally-effective mathematics curriculum. I can only conclude that this
goal is fundamentally misguided. We should not set our sights on the
same curricula sequences and targets, because these are not the same in
any reality. Incorporating what look like comparable activities into our
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curricula, will not mean that the meaning derived from them will be
comparable’. Cultural effects might even be magnified when activities
involve technology, which carries its own sets of beliefs and agendas. I
have tried to illustrate how the power of microworlds to engage our
students with mathematics rests first and foremost on what our students
believe about curriculum goals and intentions.

Our aim in mathematics education maybe to reach a common
goal - mathematical literacy comprising a better balance between skills
and competencies and engagement with mathematical thinking. We
might even agree that the computer might have a useful role to play.
Although it is deeply illuminating and exciting to move beyond the surface
features and slogans of international comparisons and focus on what
mathematics and what education we strive to achieve in our countries, to
learn from each in international meetings like this, ultimately we have to
tease out different routes to this same goal.
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