Blurring distinctions between the
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The roles of examples in the
proving process’
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Resumo

Este artigo examina as diferentes formas pelas quais alunos utilizam evidéncias empiricas
em suas tentativas na redacio de provas matemiticas. Exemplos de construcdes de alu-
nos relacionados com atividades de Algebra e Geometria sao apresentadas para ilustrar
como tais evidéncias podem ter uma variedade de fungbes no processo de prova — por
exemplo, como testes de uma conjectura, como exemplos genéricos em argumentos
dedutivos e como casos especiais para enfatizar propriedades particulares quando argu-
mentos de natureza mais indutiva sio desenvolvidos. As anilises sugerem que o
envolvimento na construgio de objetos matematicos durante interagdes com 0 computa-
dor pode encorajar alunos a identificar estruturas gerais quando da manipulaczo de casos
particulares.

Palavras-chaves: prova; computador na educacio matemitica.

Abstract

This paper considers the different ways in which students make use of empirical evidence as they
assempt vo write valid mathematical proofs. Examples of students’ proof constructions velated to both
algebra and geometry activities are presented to illustrate how that type of evidence can play a
variety of different roles in the proving process. For example, it can act as tests of a conjectured
condirionality, as generic examples in deductive argumenss and as special cases o bhighlight particular
properties when more inductive arguments are developed. It is suggested that involvement in the
construction of mathematical objects during computer interaction can encourage students to identify
general structures when they manipulate particular cases.

Key-words: proof; compusers in mathemasics education.

* Revisao de inglés: Lulu Healy.
** PUC-SP

Educ. Mat. Pesqui., Sdo Paulo, v. 2, n. 2, pp. 51-63, 2000



Lulu Healy

A consistent theme in research into proof in school mathematics
is the relationship between empirical evidence and analytic argument.
In general, this relationship has been seen as a problematic one, with
the vast majority of students far from clear abour the distinction between
inductive and deductive reasoning. Some researchers have suggested
that the cognitive gap between different modes of reasoning parallels a
profound epistemological gap between ordinary argumentation (in
which appeals to empirical evidence are accepted and commonplace)
and mathematical proof (Balacheff, 1988; Duval, 1991). Rather than
focussing on discontinuities, a2 number of recent studies, on the other
hand, have stressed connections between different aspects of the proving
process. Examples include Simon’s idea of transformational reasoning
(Simon, 1996), the cognitive unity of statement, proof and theory
proposed by Mariotti, Bartolini Bussi, Boero, Ferri and Garuti (1997),
and the consideration of role of abductive reasoning in the construction
of proofs by Arzarello, Micheletti, Olivero and Robutti (1998a).

This paper too concerns the building of connections between
different aspects of the proving process. A number of examples of the
kinds of the proof constructions produced by English and Welsh
students’ will be presented in order to consider the ways in which they
co-ordinate (or not) empirical and theoretical modalities and how this
co-ordination is shaped by different approaches to teaching proof.

1 The examples presented in this paper was are drawn from the research project, Justifying
and Proving in School Mathematics funded by the ESRC, grant no. R000236178.
The central role of Celia Hoyles in all aspects of the project is acknowledged. The
author is also grateful for the financial support of FAPESE Brazil (grant no. 1999/
02659-0) whilst this article was being written and for the comments of the participants

of the ICME working group on proof and proving in mathematics education on an
earlier version.
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Blurring distinction between the empirical and the theoretical?

First examples, then explanations

3+5=8 $§+7=12
M+7=18 31+19=50

odd number= evenno +1

So when you add two odd numbers it is the same as adding two
evensand 2 1's

odd + odd =even+ even+1+1

This makes an even number becuase it has already been proved
that two evens make an even and two odds is even + even
giving even + 2 which is even too.

So odd + odd = even

Figure 1: Explaining with reference to structure
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By drawing some quadrilaterals and
adding the interior angles, you can see
that it is always 360°

a+b+c+d=360°

Figure 2: Explaining with reference to action
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Figure 1 presents an argument constructed to prove that the sum
of two odd numbers is always even, while the argument in Figure 2 is an
attempt to prove that the sum of the interior angles of a quadrilateral is
always 360°.? There are some similarities berween the structure of these
two arguments, but also a rather important difference. Both arguments
contain a set of examples which confirm the conjectured conditionality
and which is followed by a written observation of why the given statement
is true, but the nature of the respective observations indicates substantially
different interpretations of what it means to explain. In the first, the
explanation focuses on the mathemarical properties underlying
the examples, whereas the second explanation involves a description of
the actions through which confirming evidence was produced.

Amongst the 2459 high-attaining mathemarics students (14-15
years old) who attempted to construct proofs for these two statements,
arguments with this structure — examples followed by observation — were
the most common constructions produced (see Healy and Hoyles, 1998).
This is not all that surprising since, in our mathematics curriculum,
students are encouraged to approach proving in this way. Proof and
justification activities are located largely in activities collectively known
as “investigations” where data are to be generated, synthesised into the
articulation of 2 general conjecture to be explained and, if possible, proved.
As suggested within the hierarchy of levels by which our mathematics
curriculum is organised (Department of Education, 1995), the different
aspects of the proving process are interpreted as representative of ascending
levels of reasoning, with inductive processes associated with lower levels
than deductive ones. The result is that the former are introduced before,
and usually independently from, the latter. A few students seem to be
able traverse the implied developmental passage from the empirical to
the theoretical for themselves and, when this happens (as can be seen in
Figure 1), the arguments produced are meaningful and creative. In
general, however, the generation of an appropriate set of examples does

2 These two questions appeared in a proof survey administered to students in England
and Wales. For a complete description of the survey and its results see Healy and
Hoyles (1998).
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Blurring distinction besween the empirical and the theoretical?

not necessarily motivate in students a need for deductive proof. We can
say that there seems to be no natural progression from empirical and
theoretical reasoning.

According to Duval (1998), any model of mathemarics learning
in which different ways of reasoning are organised according to a strict
hierarchy is inappropriate. Rather than being representative of higher (or
lower) levels of thinking, he argues that different kinds of cognitive activity
have their own specific and independent development. This might suggest
structuring activities to separately address specific types of thinking
processes. Instead, we chose to develop computer-based situations so that
students might face the empirical, the visual and the theoretical
simultaneously.

We devised two teaching experiments (one using a Logo microworld
and the other Cabri-Géométre) during which students worked on activities
with the following structure: first, mathematical objects are constructed
on the computer; second, by artending to the construction procedure,
the properties and relations underpinning these objects are to be identified
and described; third, the computer resources are used to generate and
test conjectures abour further properties and to inform explanations as to
why they must hold; fourth, the arguments generated during the
computer activity are organised into logical deductive chains in the
appropriate formal language.?

Before presenting examples of the students proof constructions
formulated during the experiments, it is important to stress that, unlike
the survey where students were given the conjectures to be proved, these
activities involved students in both the processes of generating and proving
conjectures. Boero, Garutti and Lemut’s (1999) suggest that students’
exploration during these two processes are similar in nature but differ in
function. In their analysis of the different ways through which students’
generate conditionalities, the central role played by empirical evidence is
clear. The following sections present some of the ways in which evidence
is used in the second process: the process of proving. These examples are

3 Details of the two teaching experiments can be found in Hoyles and Healy (1999).
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by no means exhaustive, but have been selected to focus on different
ways in which particular cases were incorporated in the construction of
analytic arguments.

Ceneric Examples:
Using a specific case to convey a general property

¢ %% 00 n This shows for 5
® © o o0 o consecutive numbers
w 56 a o you get 5{n +2)

o o @

Soitis always
divisible by §

Figure 3: Manipulating to prove

Given properties

P A A
 cBE = ABE 5
: Line BE crosses line CFat 90°:

AFBE =46°+ 80°+ . 44° (sum of angles = 180°)
ABE = 44° - CBE = 440

BEC = 80° because of bisectors - BEF =90°
ACBE =44°+ 90° + _ 46° (sum of angles = 180°)
BCE= DCE

~ AB is parallel to CD

Figure 4: Calculating to prove
Figure 3 presents an attempt to prove that the sum of five

consecutive numbers is always a multiple of five. It was written by a
student who first constructed a variable Logo procedure to generate a
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column of n dots, and then used this to produce a visual representation of
the five consecutive numbers 2, 3, 4, 5 and 6. The student manipulated
the figure in such a way that the conjecture and its proof emerged
simultaneously — in one moment the student identified both #52# and
why the property holds. No more examples were deemed to be necessary
as there was nothing special about the choice of 2 for the first number —
or rather what was special about it was that it represented both the
variable n and the first 2 dots in every column.

The argument presented in Figure 4 shows an attempt to prove
that 2 quadrilateral in which two consecutive angle bisectors cross at
right angles will have one set of parallel sides. In common with the previous
argument, one specific case only is included and it was through
manipulations performed on this example that the student managed to
construct his proof. Like the consecutive numbers example, the student-
generated conjecture (that segment AB is parallel to CD) emerged from
the consideration of just one case. In contrast, the process of determining
why was far from immediate and it was only after considerable computer
exploration that the proof was attempted. During these investigations,
a variety of configurations of the quadrilateral were created —in some the
given properties were preserved and in others they were purposefully
violated. The first critical moment in the construction of 2 proof occurred,
ironically, when the general quadrilateral was turned into a specific case
— that is when the measures for two carefully chosen (alternate) angles
were obtained. From this point on, no further manipulations of the figure
were made. The calculation of the value 3 angle in the triangle FBE, a
value which strictly speaking is unnecessary, provided the second vital
step and the obrained value was used as the basis to deduce the parallel
property.

In both these student proofs, the particular case is presented as a
carrier of its underlying relationships, it serves as a representative for the
class of possible examples. As such, they are both what have been termed
generic examples (Pimm and Mason 1984; Balacheff 1988). Typically, generic
examples have been presented as inferior to arguments formulated in
more general terms (Balacheff, 1988; Harel and Sowder 1998), although
Rowland (1998) has questioned recently whether this pejorative view is
justified. He argues that generic examples provide a powerful and
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accessible means of for conviction and explanation and, at the very least,
they might serve as a “half-way house” between empirical generalisation
and generalised formal proof.

But — apart from the danger thar this brings us back to the
hierarchical model of learning that we wanted to leave behind — what
does this mean in contexts where the distinction berween the empirical
and the theoretical is blurred? This is the case in both the microworlds
we used: A Cabri figure is simultaneous a figure and a drawing; and
working with general Logo procedures also enables students to experience
simulraneously the general relationships and their specific manifestations.
In some senses, this implies that every Cabri figure and every instantiation
of a general Logo procedure is generic. The mathematical properties of
any particular screen object are well-known to the student — they received
explicit attention in the construction process. A specific example is hence
one of the possible representations through which an object can be
expressed. The construction process is another way of expressing of the
same object —more rangible perhaps in the case of Logo, where its symbolic
encoding is easily accessible, than in Cabri. From this perspective it makes
little sense to consider a generic proof as inferior to 2 similar argument
that happens to be presented using more general terms.

Constructing a justification from a special case

ifn=0
® o 0 o
®-® ¢ %10 dots - divisible by 5
® ©
®
with every increase of n (ie 1 each time)
a row of § dots will be added
~ Itis always divisible by 5§

Figure 5: An inductive argument
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X +y +90°=180° {angles in a triangle)

& Xy =90°
- 2% +2y=180°

Figure 6: Special quadrilaterals

In contrast to generic examples chosen to be representative of their
class, the examples presented in Figures 5 and 6 were chosen precisely
because of their specific properties.

The argument in Figure 5 shows a another form of explaining why
the sum of five consecutive number is always a multiple of five. This time,
the conjecture was produced as  result of intensive empirical investigation
in which various sets of five numbers were generated and re-arranged. In
the visual view that emerged from these activities, the sum of five consecutive
number was seen to consist of a rectangular block — of width 5 — and 2
triangular tail of dots. The proof was constructed using the reasoning that
if the number of dots in the tail is 2 multiple of five, than the sum will be
too. Testing this hypothesis involved producing a very particular case,
when n = 0, and then explaining the relationship between this case and
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subsequent examples. The proof is hence a visually inspired example of
inductive reasoning, but an inductive reasoning considerable more
developed than that behind the argument in Figure 24,

The argument presented in Figure 6 was also developed from
special rather than generic cases. The proof was constructed in response
to the geometry problem described above, the investigation of properties
of a quadrilareral in which two consecutive bisectors cross at right angles.
It started from the (correct) hypothesis that a square would satisfy the
given properties. Since the student already knew about various properties
of a square, his next task was to identify which of these properties were
shared by the other quadrilaterals which also satisfied the givens. He
chose to focus on the sum of the two consecutive angles that had been
bisected and, to help in his explorations, he decided to measure them.
Then, he transformed his square into other well-known cases, a rectangle,
a parallelogram and, finally, a trapezium. He conjectured that the
properties shared by all these quadrilaterals was that the sum of the two
angles is 180° and his subsequent proof was based on another very familiar
construction, the right-angled triangle. The strategy employed in the
production of this proof is very similar to that described by Arzarello,
Micheletti, Olivero and Robutti (1998b) and, actually, both the Cabri-
inspired proofs constructed presented in this paper involved what they
describe as abductive as well as deductive reasoning.

The two examples in this section were intended to illustrate how
special cases can form the basis of 2 logical argument. Both involve
transformations of specific cases, but the nature of the final proofs was
not the same. The first argument was driven by inductive concerns, a
search for the difference between adjacent cases, while in the second,
finally expressed in a deductive form, the focus was on identifying the

4 The arguments in both Figure 3 and Figure 5 could be criticised as restricted only to
positive numbers. Undoubtedly, the majority of students who used the Logo microworld
were thinking primarily of the positive cases (although we have some evidence of students
mentally constructing visualisations of the negative cases that were impossible to construct
using the microworld tools). But we can only be sure that this is not the case for students
who use more general modes of representation if they make this explicit — it is quite
possible, even likely, thar most of them too consider mainly positive cases.
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properties shared by the generated cases. Of course, it could be argued
that in the geometry example, the student did not actually use any specific
examples, but that the square, for example, was general — the (unknown)
measures of the sides of the square were clearly irrelevant to the activity.
This only goes to show that the distinction between the specific and the
general in the geometry contexr is far from fixed.

Frameworks for proof?

Up to this point, proof constructions associated with two different
teaching approaches have been considered. In the first approach, the
approach prescribed in the statutory Mathematics Curriculum for
England and Wales, students are expected to start by experimenting
with data and identifying regularities and only later focus explicitly on
mathematical properties (and later still on the relationships amongst
properties). The second approach involved the use of computer
microworlds in which students construct mathematical objects in order
to provide the data from which they can abstract further regularities.
It has been argued that the first approach can have the effect of confining
students to empirically based reasoning, while in the second students
engage simultaneously with specific configurations and general
relationships. Even the limited examples included in this paper illustrate
how interacting with the tools of the Cabri and Logo microworlds can
provoke students to develop a variety of reasoning approaches and
facilitate reflections upon the steps made in constructing and
manipulating new objects. The student proofs presented above show
t00 how the reflections could be successfully reorganised into coherent
mathemarical arguments. Not surprisingly this did not always happen.
One situation in which all students experienced considerable difficulties
was when the construction of a geometrical object did makes visible
adequate information for a proof — that is when it was necessary for
students to add further constructions to their figures. This leaves us
with a question to consider: What activities might help the student
who produced the argument presented in Figure 7 develop the necessary
steps to complete the proof?
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square

u L : . .
all interior angles are right angles
4 x 90° = 360°

] ]

If you increase one angle, the other angle
decreases by the same angle

B
(90° + x) + {90° - x) + 90° + 90°

still equals 360°

Figure 7: Where next?
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