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Abstract

An important issue for research in university mathematics education is the use of
mathematics in engineering. Here we focus on praxeologies in a course on system and
signal theory (SST), which represents a typical module in electrical engineering studies
in the third or fourth semester. In such courses, mathematics already studied in
introductory mathematics courses will be applied, but also enriched by the introduction
and development of new practices, in particular the so-called Dirac-impulse. We claim
that the introduction and justification of the Dirac-impulse in SST is a convenient case
where basic facets of epistemological relations between mathematics and engineering
sciences might be illustrated and shown to be important for a detailed description and
analysis of logos blocks of praxeologies. The background for our considerations
regarding logos blocks of praxeologies that concern the introduction of the Dirac-impulse
is given by philosophical studies by Wahsner and Borzeszkowski (1992, 2012) and a few
illuminating remarks by Dirac.
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Résumé

Une question importante pour la recherche en éducation mathématique universitaire est
I'utilisation des mathématiques en ingénierie. Ici, nous nous concentrons sur les
praxéologies dans un cours sur la théorie du systeme et du signal (SST), qui représente
un module typique dans les études d'ingénierie €électrique au troisiéme ou quatrieme
semestre. Dans ces cours, non seulement applique-t-on les mathématiques déja
enseignées et apprises dans les cours d'introduction a la mathématique, mais on introduit
et utilise aussi de nouveaux concepts mathématiques, en particulier ce que I'on appelle
I'impulsion de Dirac. Nous affirmons que l'introduction et la justification de I'impulsion
de Dirac dans SST est un cas pratique par lequel les facettes fondamentales des relations
épistemologiques entre mathématiques et ingénierie pourraient étre illustrées et
démontrées importantes pour la description détaillée et 1’analyse des logos blocs de
praxéologies. Le contexte de nos considérations au sujet des logos blocs de praxéologies
concernant l'introduction de I'impulsion de Dirac est donné par des études philosophiques
de Wahsner et Borzeszkowski (1992, 2012) et quelques remarques éclairantes de Dirac.

Mots-clés: Théorie du signal, impulsion de Dirac, épistémologie, TAD.
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About the “Mixture” of Discourses in the Use of Mathematics in Signal Theory

The use of mathematics in engineering and sciences is an important topic for
research in university mathematics education. This is partly because of high dropout rates
and the search for measures optimizing teaching and learning of mathematics in other
study fields. Here we focus on praxeologies in a course on system and signal theory (SST)
representing a typical module in electrical engineering studies in the third or fourth
semester.

In recent years several papers have analyzed mathematical practices in
engineering. Generally there are two interrelated foci: The first one is on aspects of
modelling and application problems, where typically an engineering problem is prepared
such that mathematics from introductory higher mathematics courses has to be applied to
solve the task. In most cases it is obvious that the modelling cycle used for school
mathematics, which separates the world in a mathematical world and the rest of the world
(see for example Blum & Leiss (2005)), is not appropriate for describing and analyzing
such activities since the engineering problem is a priori formulated in mathematical terms.
Therefore, it has been suggested to use ATD for describing and analyzing the intertwined
mathematical and engineering practices (see for example HOCHMUTH, BIEHLER AND
SCHREIBER, 2014)). Moreover, Castela and Romo (2011) have introduced extended
praxeological models, an idea which was adapted by Peters, Hochmuth & Schreiber
(2017) to analyze tasks in a signal and system theory course. The institutional separation
between mathematics and engineering in courses and curricula were also the starting point
for investigations in (Barquero, Serrano, L. & Serrano V., 2013), where so called “study
and research courses” are proposed for overcoming the dominant epistemology of
“applicationism”. Our research connects in particular the observations by Barquero,

Bosch & Gascon (2011) regarding the “distinction between mathematics and the rest of
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natural sciences” and contributes to another application of the scale of level of
codeterminations (Bosch & Gascén, 2006) studying conditions that frame the use of
mathematics in other sciences.

The second focus is on the use of symbols: symbols are often both representations
of mathematical variables and representations of physical or engineering quantities. It is
often not clear to novices how they have to interpret symbols in view of a task and which
argumentations are required or forbidden, see for example (Tuminaro & Redish, 2007;
Hochmuth & Schreiber, 2015; Alpers, 2017; Peters, Hochmuth & Schreiber, 2017).

Here we adopt a slightly different position: We relate the intertwining of
mathematical and engineering ideas to its historical genesis process and the dissolving of
certain fundamental epistemological problems. Often it does not seem to be important for
an understanding of actual teaching and learning contexts to enlighten such issues in
detail. In our praxeological analyses of the use of mathematics in SST we came across
those issues, as we tried to substantiate technological and theoretical issues: In the
analysis of text-books besides clear arguments that are based on techniques and
technologies developed in higher mathematics or electrical engineering, we observed
vague argumentations bobbing up at certain steps. We had the impression, that the vague
steps arise at points that are significant both for an understanding what it means that an
engineering practice is pragmatic and for a better understanding of switching between
mathematics and engineering.

Therefore, we began to think about incorporating basic observations from
(Wahsner & Borzeszkowski, 1992; Borzeszkowski & Wahsner, 2012) that take into
account the relation between mathematics and physics. They raise several
epistemological issues which have to be resolved in any mathematically based theory

intending to describe and calculate “nature”. These epistemological issues are also
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relevant for engineering sciences, since they can be interpreted in relation to those issues
as concretizations in view of subject related aims embedded within culture-historical as
well as socio-economical processes.

After clarifying the mathematical context and focus of our paper as well as the
theoretical framework in sections 2 and 3, we exemplarily investigate passages from a
SST text-book introducing the Dirac-impulse. A sketchy praxeological analysis allows
linking vague passages to fundamental epistemological issues concerning the relation
between mathematics and physics, respectively engineering sciences. We support our

observations by a few illuminating remarks by Dirac.

Context and focus

We analyze the introduction of the Dirac-impulse in (Fettweis, 1996) with a focus

on specific steps in the justification of some of its characterizing properties:

wfort=0 [ ®
5(t) = {0 f;’rrt Zo ,f_md(t)dt - 1,f_w<p(t)5(t —ty) =

These properties are typically also introduced and used in quantum mechanics and
go back to Dirac (1927), who was already aware of the problem that 6 could not be a

“normal” function and has to be interpreted in a specific way:

Strictly, of course, 6(x) is not a proper function of x, but can be regarded only as
a limit of a certain sequence of functions. All the same one can use d(x) as though
it were a proper function for practically all the purposes of quantum mechanics
without getting incorrect results. (p. 625)

The mathematical knowledge of that time did not provide a consistent and well-
defined framework for the Dirac-impulse, which was, by good reasons, not a real problem
for Dirac, Heisenberg and Pauli in contrast to, e.g., von Neumann (Peters, 2004).
Nowadays there are several possibilities to introduce the Dirac-impulse respecting the
actual socio-mathematical norms in mathematics as a science. We remind of the following

three possibilities:

458 Educ. Matem. Pesg., Sdo Paulo, v. 22 n. 4, pp. 454-471, 2020



a) In Functional analysis (see for example Schwartz (1947)) & is
considered as a distribution, that is a linear and continuous functional on so called

test function spaces like C5°(R)or S(R).

b) In Non-standard analysis (see for example Landers & Rogge

(2013)) & can be seen as a “normal” function from the hyperreal numbers *R to

*R. In the 19th and beginning 20th century there were some discussions (Purkert,

1990) about the usefulness of the g-3-calculus for engineering students and it was

proposed, for example by Weisbach (1860), to teach instead Leibniz’s

infinitesimal calculus, which can be seen as a predecessor of non-standard
analysis. Nowadays, non-standard analysis is typically not taught in mathematic
courses for engineers in Germany.

C) Another possibility, which is partly adopted in (Fettweis, 1996),

considers distributions as limits of sequences of functions, which converge in a
specific way (Antosik, Mikusinski, & Sikorski, 1973). This approach can be
elaborated on a level that is the most part compatible with higher mathematics
taught in courses for engineers. Within this framework, integrals with respect to &
were introduced and interpreted in a symbolic way, as notions representing the
result of limit processes.

Obviously the presentation in Fettweis is mathematically not complete and it
could be argued whether and how it could be supplemented. In the following we do not
want to discuss whether the introduction of more complete and formal mathematics would
be useful from an engineering point of view. Instead we intend to demonstrate that certain
appearing gaps can be linked to fundamental epistemological issues concerning the

relation between mathematics and physics. This suggests that the gaps and their character
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are in the first instance not the deficit result of too little mathematics but the expression

of a specific historic and institutional resolution of certain epistemological issues.

Theoretical framework

We combine a praxeological analysis with conclusions from historic-
philosophical considerations based on a dialectic and materialistic point of view
concerning the relation between mathematics and physics by Wahsner and
Borzeszkowski (1992, 2012). We believe that those conclusions refer also to inherent
characteristics of the relation between mathematics and engineering sciences. According
to the status of our work in progress we use the praxeological approach for reconstructing
the engineering content and inject philosophical considerations in the analyses of the
logos-block focusing on the relation between “mathematics” (distribution theory) and

“physical reality” (signals).

Anthropological theory of the didactic

In our analysis we address two concepts of ATD: First we outline a praxeological
analysis of a SST-practice, where we focus the most elementary model of praxis/logos
blocks. This praxeological model consists of the praxis block P containing tasks and
techniques used to solve them and the logos block L containing the technological and
theoretical discourse describing justifications, explanations and production of the
elements of the praxis-block. This P/L-model could be refined into the so called 4T-model
where the praxis block is differentiated into tasks T and techniques t and the logos block
is differentiated into technology 6 and theory ®, where theory forms a discourse on
technology that is more elaborated and abstract (Chevallard, Bosch, & Kim, 2015). We
forgo formulating tasks and techniques as well as technology and theory in detail because

of limited space and since these details seem not necessary for representing the main point
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of this paper. Elements of the praxis block P, will be denoted by pi, and elements of the
logos block L, by Ii.
Second, for a more detailed understanding of technological-theoretical facets, that

form the logos block, we give a rough allocation to higher levels of codetermination.

Epistemological-philosophical observations regarding physics

In philosophical and concrete historical studies, Wahsner and Borzeszkowski
(1992, 2012) figure out those conceptual and experimental-objective preparations within
physics that facilitate to use mathematics as mean for expressing, describing and
analyzing dynamics in terms of laws and to link mathematics with measuring practices.
The following both aspects are in particular important (Wahsner & Borzeszkowski, 1992,
pp. 125-135):

a) Since only finite distances are measurable, conceptual
contradictory identifications of infinite or infinitesimal quantities, which arise in
mathematical structures, with finite quantities are enforced. The particular context
dependent adequate but from a mathematical perspective inconsistent use of
mathematical concepts is historically one of the most original achievements of
physics.

b) Only effects of properties of objects are measurable and not
dynamic interactional relations. This leads to the question, which behavior can be
transformed to a property. Related answers could be found studying the
complicated historical genesis of physical measured quantities.

Physical quantities are thinking-objects, which are constructed on the basis of real
equalities, checked by specific instruments in specific experiments; they are tools for

investigating real objects in contexts. Considering and treating physical quantities under
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the measurement aspect allows to formulate dynamics related laws in such a way that
their assertions can empirically be proved.

In contrast to physics, quantities appear in mathematics merely within functional
structured systems that presuppose their existence. This facilitates mathematics to be
without inherent contradictions and formally consistent, but, at the same time, disable
mathematics to make assertions about real objects and their behavior. Therefore
mathematics needs physics (or another empirical science) to make statements about
reality (p. 128). On the other hand, physics needs mathematics for measurements,
calculations and expressing dynamic interactions by laws, that is: mathematics allows

making basic relations calculable and measurable.

Praxeological analysis

In this section we present an ATD analysis of the introduction of the Delta-
impulse in (FETTWEIS, 1996). The main ideas and results of this analysis are also

relevant for related SST-books like Girod, Rabenstein and Stenger (2007).

General considerations on signals

Fettweis characterizes signal and system theory not as a technical but as a, in
general, physical discipline. The author stresses the importance of physical understanding
and argues that an increasing elaboration of mathematical concepts would not only go
beyond the scope of the book, but would make the understanding of the physical
reasoning of methodological issues increasingly harder. He constructs the relation
between mathematics and physics as a dilemma between mathematical precision and the

understanding of physical reasoning. This positioning between mathematical precision
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and the understanding of physical reasoning affects the praxeologies, especially their
logos-blocks.

The focus on physical understanding leads Fettweis in particular to a general
principle concerning two different but connected concepts of signals: “real signals x(t)"
occur at communications transmission and are irregular. Furthermore, they have the
following properties:

They are of finite duration, i.e. there exist to and t; with t; > to,
such that x(t)=0 fort <tpand t > t;.

They are continuous for all t€ (-00,00).
They are sufficiently differentiable.

Following Fettweis (p. 5) real signals are characterized by irregularity and high
diversity, so they are inappropriate for numerical and analytical calculations and are not
usable as measurement signals. Therefore “idealized signals”, which will unavoidably
violate some of the properties (1) to (3), are introduced. In spite of their simplicity, using
idealized signals can cause difficulties, especially with respect to convergence. As an
example, Fettweis (pp. 8) considers the unit step function that satisfies none of the
properties (1) to (3)

Ofort <O

u(t) =41/2fort =0
l1fort>0

In such a case the idealized signal can be replaced by real signals, such that the
specific difficulty does not arise any more. After an analysis using real signals the
replacement can be reversed. This general principle is illustrated in Figure 1:

Figure 1

Illustration of the interplay between idealized and real signals

analysis

//_—__‘—\
real signals real signals
Illf_)dify/l‘(!pl‘rl(‘L‘T l]imit process
idealized signals idealized signals
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The unit step function u(t), for example, could be replaced by continuous, int=0
rapidly increasing real signals f, (t), c.f. Figure 2.

Figure 2

Function series approximating the unit step function

(1)

The approximation is symbolically expressed by u(t) = {f, (t)} and also written

as limit process: u(t) = rllingo f(@®).

The general principle is justified by referencing the compliance with approaches
in other physical disciplines (p.6), by a need of physics to use function series for
approximations and by claiming that an adequate application of the principle generates
unambiguous and correct results (p. 12). In the same paragraph Fettweis refers also to
Distribution Theory as a mathematical domain. He explicitly refers the work of L.
Schwartz, that is presented in a “very abstract and physically less appealing form” (p. 12)
and the work of Antosik, Mikusinski, and Sikorski (1973), that could be seen as an

elaborated mathematical basis for the presentation in Fettweis.

The Delta-impulse

In this section we provide a sketchy praxeological analysis of the introduction of
the Delta-impulse. First we summarize elements of the praxis blocks p;. Then we describe
the technological-theoretical discourse with regard to the considerations in 4.1. We

specify the elements of the logos block by ;.
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The idealized impulse §(t)is defined by a series of real impulse-functions (p,):
§(t) = {f,(t)} with the following properties

(1)  f.(®) has width 2¢, with lim €, = 0.

n—-oo

(2)  Allimpulses f, have the same normalized area: [*_f,(t)dt = 1

This definition is illustrated by Figure 3:

Figure 3

Function series representing the Delta-impulse

€ €530 558 § T

Illustrating properties of functions by graphical representations (p,) is a common

practice in engineering textbooks and in particular in SST. By idealizing (i) and (ii) the

two properties a) §(t) = {szgrrtt:(? and b) ffomd(t)dt =1 are assigned (ps) and the

idealized impulse 6(t)) is visualized by Figure 4 (p,):
Figure 4
Visualization of the idealized Delta-impulse

5(t)

B —

t
The third important property of the Delta-impulse, the sifting property
f_°°oo p()6(t — ty) =@(ty), is deduced as follows: §(t) is replaced by a function series {f;,}

(p1) according to Figure 3 (p,).For narrower and narrower pulses f,(t — ty)the function
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@ (t)could be replaced by the value (t,) (p4). Using property (ii) (ps) and referencing to
Figure 5 (p,), the sifting property follows.

Figure 5

Sifting property

/ / !'o'\ t

to€n  tgen

The technological-theoretical discourse is especially based on the general
principle connecting idealized and real signals, illustrated in Figure 1. This provides
justifications for p, and p; (1;): The definition via a series of real impulses reflects the
interplay between real and idealized signals. Furthermore, it is argued that pulsed signals
are very useful for engineering (1,) (p. 12). The properties (i) and (ii) are directly linked
to properties of pulsed signals: only the action of the signal matters, not the specific form
(Iy). This is fulfilled, if the duration of the signal is very short, i.e. 2e. The action of the
signal corresponds to the area, in Fettweis also denoted by “Impulsmoment”, illustrated
in Figure 6. This refers to the idea of the integral as area from mathematics courses (1,).

Figure 6

Example of a real impulse
x(t)

Impuls moment

-£ 0 E —
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The element p, is produced by the justifying characteristic of visualizations
(I5): In Figure 3 a limit-process of real signals is visualized and the corresponding result
is shown in Figure 4. So the visualizations reflect also the idealization process. The
illustrations act as ostensive metaphors. Dirac (1963) claimed: “The delta function comes
in just from picturing the infinity as something, which approximates to them.”
Additionally the principle, that the exact course of the signal doesn’t matter, the essential
is, that it is pulsed is important for all figures (I5). The ever shorter durations of the pulsed
signals justify the replacement of ¢(t) by (t,) (Is). The properties a) and b), which are
assigned in ps, are idealizations of properties (i) and (ii), properties of real signals, which
are transferred to properties of an ideal signal. Especially property b), which contradicts
the understanding of the integral in higher mathematics courses, is not mathematically
justified yet. Fettweis (p. 14) discusses this point explicitly and justifies the integration
by referring to real signals.

Summarizing, the technological-theoretical discourse is a mixture of higher
mathematics ideas (1,), engineering reasoning (i.e l,and I3) and a principle concerning the
interplay between real and idealized signals reflecting the connection of mathematics and
physics in general (1;). The justification and explanation of practices considering
idealized signals like &§(t) are done on the level of real signals. This correlates with
Dirac’s (1958) hint, that one must exit the mathematical context for justification and do
not interpret 6 as mathematical symbol.

The reconstructed elements of the logos block and other justifications and
explanations could be assigned to different levels of the scale of levels of
codetermination: The justification of the principle in Figure 1 lies on the level of the
discipline (physics). The technological-theoretical elements [, I,, I, and s could be

assigned to domain (engineering), I to sector (signal theory) and [, to the level of the
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subject (Delta-impulse). The local curriculum (level of university) and experience and
propensity of the author of the textbook are also mentioned as a restriction for the content
(Fettweis, p. iii). Finally we refer to a remark by Peters (2004, p. 99) that adapts a
statement by Schwinger about Feynman-diagrams: “the o&-function ‘was bringing
computation to the masses’*, which expresses the teaching and learning process related
institutional aspect of the Dirac-impulse in a rather convincing way. Moreover, this

statement indicates aspects on the level of society.

Further remarks related to epistemological-philosophical issues

The Dirac-impulse represents an idealized signal. Via approximation sequences
this idealized signal, which is neither observable nor measurable, was linked to real
signals, which are in principle observable and measurable. The scheme in figure 1
represented the basic consideration that underlies specific and, regarding the SST-context,
adequate identifications. In particular theoretical relations including ¢ as well as 6 itself
gain empirical meaning: idealized signals like 6 become physical quantities in the sense
of 3.2, which allows formulating relations like the sifting property and measurements.
These interrelations (e.g. allowing measurement, being element of a relation) imprint
certain properties and induce techniques and technologies treating J, which look purely
mathematically and were historically important aspects for developing a systematic and
axiomatic based mathematics for 6. From the physical point of view this might be helpful
but is not necessary.

Furthermore, the mathematical theory as such does not allow injecting into o
physical meaning how it is enabled by, among others, the scheme in figure 1: For linking
o with measurable quantities, it has occasionally to be replaced in a SST adequate way,

which necessarily transcends the formal mathematical context. In particular the inherent
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and specific identification of “finite” and “infinite” cannot mathematically be proved to
be correct but could only be mathematically explored.

Moreover, the sifting property links a global continuous object ¢ to local values
¢(to). This is one of the issues of J in equations, e.g. in transferring relations from discrete
signals to continuous signals and vice versa. This gives the possibility for treating the
dialectic between “point” and “continuum” in such a way that allows computation (&

appears in equations and calculus) and measuring.

Conclusion

We claim that a broad understanding of logos-blocks in praxeological reference
models taking into account higher levels of codetermination is valuable, since it allows
in particular identifying inherent issues, which have to be resolved in some way by any
institutionalized didactical or pedagogical practice. Here the aim was amongst others to
illustrate and identify the relevance of basic philosophical-epistemological ideas for
enriching the logos-block of praxeologies in SST and how they contribute to a wider

understanding of actual justifications of practices. We will move on in this direction.
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