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Abstract 

Niels Bohr, as is well known, introduced the notion of complementarity into physics, as 

a fundamental principle of quantum mechanics. It holds that objects have 

complementary properties that cannot be measured accurately at the same time. For 

example, the particle and wave aspects of physical objects are such complementary 

phenomena. Both concepts are borrowed from classical mechanics, where it is 

impossible to be both, a particle and a wave at the same time. Particle and Wave 

represent the complementarity of the Discrete and the Continuous. Humans reason by 

means of concepts (meanings) and language, as well as, by means of logical or 

arithmetic symbolism. Meanings are continua, whereas logic and arithmetic are based 

on relations of identity and difference. 
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I. 

Niels Bohr, as is well known, introduced the notion of complementarity into 

physics, as a fundamental principle of quantum mechanics. It holds that objects have 

complementary properties that cannot be measured accurately at the same time. For 

example, the particle and wave aspects of physical objects are such complementary 

phenomena. Both concepts are borrowed from classical mechanics, where it is 

impossible to be both, a particle and a wave at the same time. Therefore, it is impossible 

to measure the full properties of the wave and particle at a particular moment. 

We are not concerned at this moment with the philosophy of science, but are 

interested in the fact that waves are continuous entities and particles are distinct or 

discrete. Or rather, we are interested in the difference between analog and digital 

representations, and with the different types of generality associated with these. 
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Analogy means being concerned with structural similarities. Everything appears similar 

to everything else in some respect. Therefore, the art consists in finding structural 

similarities that can be cast into mathematical definitions. 

Claude Levi-Strauss once said that in science there are two methods only, the 

reductionist or the structuralist (Levi-Strauss, C., Myth and Meaning, Routledge 

London, chapter 1). However, the structural relationships considered should be similar 

too in terms of function. For example “looking in a natural history museum at the 

skeletons of various mammals, you may find them all frightening. If this is all the 

similarity, you can find between them you do not see much analogy. Yet you may 

perceive a wonderful suggestive analogy if you consider the hand of a man, the paw of a 

cat, the foreleg of a horse, the fin of a whale… these organs so differently used, as 

composed of similar parts related to each other” (Polya, 1973, p. 13) 

Structuralism is synthetic it is connected with constructivism – Piaget did 

emphasize this over and again – and it determines objects by comparison of structural 

relations. Functionalism represents, in contrast, an analytical approach. One example: 

Bernhard Riemann (1826-1866), one of the greatest mathematicians of the 19
th

 century 

and philosophically the most sublime of all, once wrote a small paper on the 

“Mechanism of the Ear” (Riemann, 1953), in response to a publication of Hermann 

Helmholtz of 1863. He did so for essentially methodological reasons, the main point of 

his study being the clarification of the analytical method.  

Helmholtz was a leading proponent of the synthetical approach in the natural 

sciences or medicine, which begins by presenting the object and then assigning certain 

functions to it, rather than designing hypotheses on base of variable behavior of the 

organ and drawing conclusions from this. In the present case, it is the middle ear, which 

the synthetic approach characterizes anatomically to begin with and then one tries to 

explain on such grounds how the organ works. Riemann begins his paper with the 

following words: 

“The physiology of a sense organ requires - aside from the general laws of 

nature - two particular foundations; one psychophysical, that is, the empirical 

verification of the achievements of the organ, and one anatomical, that is, the 

investigation of its construction. …. Accordingly, there are two possible ways of 

gaining knowledge about the organ’s functions. Either we can proceed from its 

construction, or we can begin with what the organ accomplishes and then try and 

explain these accomplishments” (Riemann, 1953, p. 338). 
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Riemann calls the first route, synthetic and the second analytic and he prefers the 

analytical route in opposition to Helmholtz, being aware, however of the fact that any 

more involved investigation will in the end needs to employ both methods. The first 

proceeds from causes to effects, whereas the second seeks causes of given effects or 

conditions of intended goals.  

Riemann prefers the analytical approach not least because he is always careful to 

find out about the necessary premises of an explanation or a mathematical proof. The 

essential chapter of Riemann’s famous Habilitationsschrift, for example, begins with the 

classic statement: “First then, what do we understand by ∫f(x)dx ?” (Riemann, 1953, p. 

239). 

Riemann, by asking what the symbol ∫f(x)dx means, searches for necessary 

conditions of integrability, rather than starting some more or less traditional and 

arbitrary sufficient properties of the functions to be integrated, like continuity, as 

Cauchy did. Riemann was thereby able to generalize the notion of the integral and was 

beginning to realize its dependency from theories of measure. It seemed thus, “that 

Riemann had extended the concept of an integrable function to its outermost limits” 

(Hawkins, 1970, p. 34).  

There is more, however, to this complementarity of structure and function. 

Structure and function are not strictly connected or subordinated to each other, but are 

complementary and this complementarity becomes effective from an evolutionary 

perspective. Suppose we have put a coordinate grid on the image of a wolf skeleton, 

which specifies certain points of the skeleton structure, such as a toe, the ankle, the last 

rib in the geometric plane. We then try to adapt this grid with its assignments to the 

analogical picture of the skeleton of some dog, a Great Dane, for example, or a 

dachshund. The previously straight lines of the grid now appear deformed because, for 

example, the relationship between head size and leg length might have changed more or 

less. The degree of deformation measures the degree of evolutionary change or the 

distance in the relationship line (see: Wolf to Woof, The Evolution of Dogs, Nat. 

Geographic, vol. 201(1), January 2002, pp. 2-11).).  

What has been a particular thing before now becomes the sign of the continuous 

context and of the evolution, it becomes dissolved into a continuous movement, into the 

context of the continuum and thus it becomes a general. The individual skeleton 

becomes a variable of a kind. The continuum represents a realm of possibility and thus a 

different kind of generality, relational generality, than the usual generality of predicates 
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or functions. When we conceive of generalization as the introduction of variables, we 

can realize that difference by observing that in discrete mathematics and computer 

science variables are mere placeholders, while in continuous mathematics and the 

empirical sciences variables are “general”, that is, incompletely determined objects, like 

the general triangle. In addition, in a proposition like “an apple is a fruit” it would be 

unnatural to interpret “an apple” as a placeholder, because this presupposes that we have 

given individual names to all the apples in this world (Quine, 1974).  

There are ideas of an apple or a triangle in general, but they turn out to be ideas of 

particular triangles, put to a certain use. On such an account, a general triangle is a free 

variable, like the terms in axiomatic descriptions, and not a collection of determinate 

triangles. It is an idea, which governs and produces its particular representations. And 

which properties are essential to a „general triangle”, depends on context, on the activity 

and its goals. If the task, for instance, is to prove the theorem that the medians of a 

triangle intersect in one point, the triangle on which the proof is to be based can be 

assumed to be equilateral, without loss of generality – because the theorem in case is a 

theorem of affine geometry and any triangle is equivalent to an equilateral triangle 

under affine transformations. This fact considerably facilitates conducting the proof 

because of such a triangle’s high symmetry. Thus, we end up by choosing a particular 

triangle, a particular exemplar of a type by considerations of functionality. Bishop 

Berkeley’s discussion of the idea of “general triangle’ had already made us aware of 

these realities. 

 

II. 

Communication is a kind of behavior and any behavior is communicative, but 

may be ambiguous in its message: a clenched fist may communicate excitement, fear, 

anger, frustration and many more things and a punch to the shoulder may mean to 

reinforce friendship, or encouragement, or, to the contrary, it may be an assault. 

Therefore, communication depends on meta-communication. The greeting, “Pleased to 

meet you!”, is as a rule classified by facial expression and gestures as either true or 

false. Moreover, if the meta-communication lacks, paradox may be the result, as when I 

say, “I am lying”. The switch from the analogical and continuous to the digital and 

discrete is usually accompanied by a loss in sense, that is, meaningfulness and a gain in 

information. 
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All natural systems of communication employ both analog and digital 

communication at some level in the system and “the question of the analog and the 

digital is one of relationship, not one of entities” and thus a question of complementarity 

(Wilden, 1972, p. 188). 

An analog computer works by means of an analog between real continuous 

quantities and some other set of variables. The balance, the flyball governor, the wind-

channel or even the accelerator pedal in your car, are examples of analog computers, 

whereas electronic computers are digitalized systems. They operate on discrete 

elements, on a set of distinct symbols, like zero and one, or Yes and No, distinctions 

made possible by electronic switches or on/off processes. There are no variables in a 

discrete system and what is called variable is merely a location or a placeholder. 

Negation in any language depends on syntax, such that the analog computer contains no 

negation, it cannot say not-A and cannot represent nothing. Mathematical knowledge is 

based on the relations of identity and difference. Otherwise, the law of non-

contradiction does not apply. The principle of consistency, according to Kant, only 

applies if there is an object given. The statement that “a triangle has three angles”, says 

Kant, “does not enounce that three angles necessary exist, but upon the condition that a 

triangle exists three angles must necessarily exist in it” (Kant, B 622).  

With modern mathematics things are exactly the opposite way, that is, the law of 

non-contradiction comes first and the whole universe of possible “objects”, the entire 

ontology comes to be based on this principle. The first condition a system of 

axiomatical definitions must fulfill, in order to function as a sign or representation at all, 

is consistency 

If we think of numbers, we realize that zero, 0, is not a number, according to the 

Frege-Russell definition, but is a sign to organize numerical representation. Zero is “a 

meta-integer, a rule about integers and their relationships” (Wilden, 1972). It is, 

generally conceived of, for example, as the balancing out of a positive and a negative 

number of equal value. Equality is after all the most important relationship of arithmetic 

and algebra and it should be used to generalize. The rules for calculating with fractions, 

so difficult for children to remember or understand, come out completely natural, if we 

represent for example the fractional number 3/7 by the equation 7x = 3! 

By the same token the “empty set” is not a set, but is essentially the sack into 

which elements could be put. This view of the notion of set, as “collection-as-one” 

draws a categorical distinction between a set and the collection of its elements. 
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Moreover, by putting the sack into another sack, and so forth, one creates a conceptual 

hierarchy of great complexity. Frege did not adopt this view of sets, arguing, “if we 

burn all the trees of a forest, so we burn the forest (Wenn wir sämtliche Bäume eines 

Waldes verbrennen, so verbrennen wir den Wald)” (Frege, 1996, p. 93). The paradoxes 

of set theory resulted therefore “not from an inconsistency of our intuitive notion of set, 

but from a conflation of two or more incompatible notions (set-as-one, set-as-many)” 

(Potter, 1990, p. 10).  

The somewhat specific character of Frege’s view is obvious because a forest is, in 

fact, more than a set of trees, and human society something more than the sum of 

individuals. In Frege’s universe, there are only two things, objects and functions. And 

functions are not objects, or at any rate, they are not objects of the same type, as the 

arguments falling under them. Therefore, we have second-level functions, etc. thereby 

creating a logical system of enormous complexity, which can be handled by the 

computers, but not by man - in computer programming it is common to insert programs 

into programs as subroutines.  

To avoid this complexity Frege, supposed that a function of any level determines 

a set of ground-level objects, called its extension. Frege in particular interpreted the 

natural numbers as concept-extensions, because the number concept has to be 

universally applicable. Russell informed Frege in 1902 that this construction produces 

the so-called semantic paradoxes of set theory.  

Logical argumentation is based on some assumption of self-evidence. If 

somebody does not understand what you are saying, you are inclined to respond: But, it 

is logical, isn’t it! On such an assumption, Hilbert has called formal logic self-evident. 

The starting point for this problem is the assumption that every proposition immediately 

implies itself. If I say “p” this implies “p”. And this in turn means, “p is true”. The 

predicate “is true” does not really add something to the status of the original 

affirmation, although “p” and “p is true” are in general different sentences. Truth is 

undefinable, as Frege did say already. Thus, one might want to settle with the view that 

“p is true”, really implies “p is true”. Therefrom results the ‘immediacy assumption’ for 

formal systems, which is a kind of minimum loop principle.  

Churchman asks, “What's wrong with the minimum loop principle? …. What 

can disturb the balance of logical perfection? Now a Cretan can. This Cretan – we may 

call him Epimenides - says all Cretans are liars”. And this inevitably leads to the abyss 
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of paradox. If we do not prohibit the Cretans to talk about his own talk, we end up in a 

paradox (Churchman, 1968, p. 113-114). 

As a reaction, one might try and adopt as maximum loop principle. “The 

maximum-loop principle is “fantastic. It says that self-reflection is possible only if one 

returns to the self after the longest possible journey. It is exemplified in .the great myths 

of the heroes: Ulysses must go through every deep experience of human life before he 

can come to his resting point. …. The maximum-loop principle is based on a monistic 

philosophy: There is one world of interconnected entities, not many. The most distant 

galaxies and the most menial worker somehow have a connection. The principle is also 

teleological. For the mind to know itself; it must also know the destiny of all minds as 

well as all matters” (Churchman, 1968, p. 113-114). 

This maximum principle fails us too, however, because it is actually 

unrealizable, because the world as a whole would put an infinite resistance to our 

knowledge process, therefore science has to try and limit its contexts of investigation. 

The complementarity of maximum and minimum principle presents us another example 

of the complementarity the continuous and the discrete. In mathematics continuous 

geometry one the one side and discrete arithmetic on the other represent the 

analog/digital difference.  

What about algebra? Algebra is a kind of meta-arithmetic combining the analog 

and the digital. Algebraic diagrams are essentially icons of structural relationships. 

Now, all mathematical reasoning is diagrammatic and “all necessary reasoning is 

mathematical reasoning, no matter how simple it may be” (Peirce, CP 5.148).  

Diagrams are essentially icons, and icons are particularly well suited to make 

graspable and conceivable the possible and general, rather than the actual and existent. 

Diagrams, however, must also include indices, signs that indicate, or denote or are 

actually connected to, some particular thing in order to fix references. The indices 

occurring in pure mathematics refer to entities or objects that belong to a model, rather 

than to “the real world”, that is, they indicate objects in constructed semantic universes.  

Indexicality is what in particular makes the semiotic approach to mathematics 

unavoidable and Peirce saw as no one before him had, that indication (pointing, 

ostension, deixis) is a mode of signification as indispensable as it is irreducible. Frege 

missed this point and adopted a theory of reference based on descriptions. This brought 

about the troubles of self-reference that created paradox. 
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III. 

A simple illustration of the complementarity between the continuous and the 

discrete and the between the related differences in argumentation may be obtained by 

representing proofs of the incommensurability of the side and the diagonal of the square 

or the regular pentagon, respectively. Looking at the common diagrams which represent 

traditional visualizations of the familiar incommensurability of side and diagonal in the case 

of the square respectively the regular pentagon (Otte, 1990, p. 37), interpretation can be done 

in two ways.  

First, I may concentrate on the method or way of "finishing" the picture, that is, the 

recursive sequence of the picture within the picture, within the picture …... Doing this, I find 

out that this method corresponds to the Euclidean algorithm. As a result, I obtain, based on 

the visual representation, insight into the recursive structure of this algorithm, as well as the 

insight that this algorithm can be used for a proof of incommensurability without recurring to 

the natural numbers. 

The diagrams of the regular polygons also require us to disregard scales. The 

invariance under geometric similarity or “application to the problem of the 

incommensurability of side and diagonal of self-similarity” then demonstrates directly 

that the algorithm does not lead to the desired goal, i.e. to a division without residue. 

Side and diagonal are thus incommensurable. 

Second, I may also, following a different approach replace the geometrical quantities 

by their numerical measures, with respect to a fundamental unit that measures both the side 

and the diagonal in whole numbers. The recursivity or self-similarity leads to an infinitely 

decreasing progression of natural numbers, as all figures have sides composed of "whole 

numbers". This gives a contradiction. In doing this, I may incidentally note that the 

geometrical method of construction of the sequence of polygons can be interpreted in terms 

of the Euclidean algorithm (Otte, 1990). 

If I consider the algorithm, however, only in die field of arithmetic, only using it 

together with the numbers, and not interpreting it geometrically, visually, it will not 

appear in itself, it will not show its recursive structure. To attain this, I have to use 

visualization and interpret them directly that is "an image within an image within an 

image...“ With the concept of recursion, I shall then simultaneously obtain a means to 

describe a large number of algorithms.  

This tells us that there are two types of generality, Fregean or Platonic predicative 

generality of functions, on the one hand, and continuity, in the sense of Aristotle or 
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Peirce, on the other hand. Peirce, calling himself “an Aristotelian of the scholastic 

wing”, describes them thus: 

 “The old definition of a general is Generale est quod natum aptum est dici de 

multis. This recognizes that the general is essentially predicative and therefore of the 

nature of a representamen. ... In another respect, however, the definition represents a 

very degenerate sort of generality. None of the scholastic logics fails to explain that sol 

is a general term; because although there happens to be but one sun yet the term sol 

aptum natum est dici de multis. But that is most inadequately expressed. If sol is apt to 

be predicated of many, it is apt to be predicated of any multitude however great, and 

since there is no maximum multitude, those objects, of which it is fit to be predicated, 

form an aggregate that exceeds all multitude. Take any two possible objects that might 

be called suns and, however much alike they may be, any multitude whatsoever of 

intermediate suns are alternatively possible, and therefore as before these intermediate 

possible suns transcend all multitude. In short, the idea of a general involves the idea of 

possible variations”, of free variables, or of continuity (Peirce, CP 5.102-103). 

Rather than speaking about suns, we might think of the general triangle or similar 

variables (see above). 

This twofold character of the general is expressed in the history of mathematics 

by two different interpretations of the Continuity Principle, two interpretations over 

which Cauchy and Poncelet quarreled (Belhoste, 1991), when the idea of pure 

mathematics was at stake, although they had been present since Antiquity. It seems, 

indeed, that these interpretations occurred in two different kinds of proof in Greek 

mathematics.  

During the first phase of Greek mathematics, a proof consisted in showing or 

making visible the truth of a statement. This was the epagogic method. This first phase 

was followed by an apagogic or deductive phase. During this phase, visual evidence 

was rejected and Greek mathematics became a deductive system (Koetsier, 1991, and 

the bibliographic reference given there).  

Now epagoge and apagoge, apart from being distinguished, roughly according to 

the modern distinction between inductive – or rather: abductive or hypothetical - and 

deductive procedures were also identified on account of the conception of generality as 

continuity. Epistemology of mathematics today only remembers the distinction, 

forgetting where they agreed, in this manner not only destroying the unity of the 
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perceptual and conceptual, but also forgetting what could be gained from Aristotelian 

demonstrative science. 

Even the diagrams of Euclid could be interpreted in two complementary ways. Ian 

Mueller, for example has described the situation in relation to Euclid’s diagrammatical 

proofs as follows: “The Euclidean derivation is a thought experiment. [...] the major 

obstacle to an acceptance of the interpretation of Euclid's arguments as thought 

experiments is the belief that such arguments cannot be conclusive proofs. In particular, 

one might ask how consideration of a single object can establish a general assertion 

about all objects of a given kind. Part of the difficulty is due, I think, to failure to 

distinguish angles equal. Under one interpretation the statement refers to a definite 

totality [...] and it says something about each one of them. Under the other interpretation 

no such definite totality is presupposed, and the sentence has much more conditional 

character – ‘If a triangle is isosceles, its two base angles are equal’. A person who 

interprets a generalization in the second way may hold that the phrase 'the class of 

isosceles triangles' is meaningless because the number of isosceles triangles is 

absolutely indeterminate” (Mueller, 1969, p. 291-292, 299-300).  

Mathematics then reasons starting from the meanings of certain representations, 

rather than from supposed characteristics of a class of objects. Theoretical concepts on 

such accounts are not empirical abstractions, but are operative schemata, like in modern 

axiomatics in the sense of Hilbert or Peano.  

Mathematics becomes intensional and it must be complemented by some intended 

applications. In a dynamic view, the intensions and extensions assume greater autonomy 

and independence from each other, and the problem of the so-called. “impredicative 

definitions” loses its threatening character (Smirnov, p. 223-232).  

Epagoge is often translated by induction, but is not really induction, but is more 

like what Peirce calls abduction, or reasoning from intuited hypotheses. It proceeds by 

taking one individual as prototypical for the whole kind. However, one has to choose 

the type or kind. Whewell, arguing against Mill’s positivism, expresses in a quite 

charming manner: 

“Induction is familiarly spoken of as the process by which we collect a General 

proposition from a number of particular cases: and it appears frequently imagined that 

the general proposition results from a mere juxta-position of the cases. … But if we 

consider the process more closely … we shall perceive that this is an inadequate account 

of the matter. …. The pearls are there, but they will not hang together till someone 



Caminhos da Educação Matemática em Revista/On line - v. 3, n. 1, 2015 - ISSN 2358-4750. 97 
 

provides the string. ... Hence in every inference by Induction, there is some conception 

superinduced upon the facts: and we may henceforth perceive this to be the peculiar 

import of the term Induction" (Whewell, 1847, vol. 2, pp. 46-48). 

 

IV. 

Let us come back to the problem of incommensurability, making clear that there is 

no possibility of positively telling what an irrational number is, without employing 

some notion of continuity, like the continuum of real numbers, which can be presented 

only axiomatically, that is, conceptually, because of the fact that the set of real numbers 

is not countable or enumerable. 

Some psychologists have tried to avoid the continuum and have failed. Let us look 

at the following example of two different explications of the notion incommensurability 

and irrational number: 

1) Commensurable line segments 

In comparing the magnitudes of two line segments a and b, it may happen that a is 

contained in b an exact integral number r of times. In this case we can express the 

measure of the segment b in terms of that of a by saying that the length of b is r times 

that of a. Or it may turn out that while no integral multiple of a equals b, we can divide 

a into, say, n equal segments, each of length a/n, such that some integral multiple m of 

the segment a/n is equal to b:  b = (a/n).m = (m/n).a 

When an equation of the form above holds, we say that the two segments a and b 

are commensurable, since they have as a common measure the segment a/n which goes 

n times into a and m times into b. (Courant & Robbins, 1941, p. 58) 

 

2) Commensurable line segments 

It is said that two line segments are commensurable if they have a common 

measure. What does it mean to have a common measure? Let us assume that one line 

segment is 3 cm long and another, 9 cm. The two line segments are commensurable: 

The common measure is 3 cm. It fits once into the first line segment and exactly three 

times into the second. Let us assume that one line segment is 6 cm long and another, 10 

cm. These, too, are commensurable. Their common measure is 2 cm: It fits three times 

into the first line segment, and five times into the second. Even for two line segments of 

length, say, 1.67 cm and 4.31 cm, it is easy to find a common measure: 0.01 cm. It fits 

167 times into the first line segment and 431 times into the second. What do these 
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examples tell us? Two line segments are commensurable if one line segment (or a 

fraction of it) is contained within the other without remainder. 

The second quotation above was written by two psychologists who wanted to 

“improve the original mathematical text” by Courant and Robbins. “Avoiding variables, 

formulae and diagrams” was noted as a typical feature of improvement (and the revision 

omitted a geometrical diagram that was in the original). Indeed, the revision has its 

merits from the perspective of “pure” readability, which is conceived of as being neutral 

with regard to a cognitive use of the text. The second text seems clear and 

straightforward, like a simple calculation. 

On the other hand, the revisers do not seem to have realized that the mathematical 

subject matter itself has in a way disappeared after the variables and diagrams have been 

eliminated. If one replaces the relations between line segments by relations between 

decimal numbers from the very outset, one of course always has a common measure. 

The object of the original text does not simply consist of a defining circumscription of 

commensurability; it was occasioned by the problem of incommensurability, which has 

continued to cause astonishment, speculation, and contemplation since antiquity. This is 

the question at issue mathematically, and not the verification that 1.67 is a rational 

number, as the second text leads one to believe. One might even suppose, reading this 

text, that all numbers are rational and that there is no incommensurability.  

The subject matter in question, namely incommensurability, appears then as the 

unknown, or at least, as the territory not yet described and mapped out. The irrational is 

characterized in merely negative terms, that is, as that which is not rational. This is 

exactly what teachers usually tell their students when trying to explain what irrational 

numbers are. The question cannot be treated without the continuum. The continuum per 

se is without units and the term “incommensurability” does in fact say that we cannot in 

certain situations find a common unit. 

Bolzano, Frege and Russell opted in favor of an arithmetization of mathematics 

because the thought that universal mathematics must be digital. Geometry became 

considered a field of intended applications of discrete or arithmetized mathematics and 

the Aristotelian continuum became replaced by an arithmetical model of it. Mathematics 

had thus to become meta-mathematics, taking its own activities and procedures as new 

objects. Piaget, for instance, describes the process of mathematical development in 

terms of hypostatic abstractions, which he calls “reflective abstractions”.  
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The essence of hypostatic abstraction is the recursive nature of thought, which is 

expressed by the fact that a thought or an action can be made the object of another 

thought. The infinite recursive process of abstraction is a feature of the mathematics of 

modernity. 

“In Greek mathematics, whatever its originality and reputation, symbolization ... 

did not advance beyond a first stage, namely, beyond the process of idealization, which 

is a process of abstraction from direct actuality, ... However ... full scale symbolization 

is much more than mere idealization. It involves, in particular, untrammeled escalation 

of abstraction, that is, abstraction from abstraction, abstraction from abstraction from 

abstraction, and so forth; and, all importantly, the general abstract objects thus arising, if 

viewed as instances of symbols, must be eligible for the exercise of certain productive 

manipulations and operations, if they are mathematically meaningful” (Bochner, 1966, 

p. 18). 

A look at the history of mathematics, actually, teaches us that the problem of 

universals, the problem of generalization by hypostatic abstractions and the 

transformation of contents of thought into objects of contemplation, on the one hand,  

had been the basis of the dynamics of the development of mathematics in modern times, 

and that, on the other, have created resistances to the tentatives to clarify the 

foundations of pure mathematics. 
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