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ABSTRACT 

Intellectual need, a key part of the DNR theoretical framework, is posited to be 

necessary for significant learning to occur. This paper provides a theoretical 

examination of intellectual need and its absence in mathematics classrooms. 

Although this is not an empirical study, we use data from observed high school 

algebra classrooms to illustrate four categories of activity students engage in while 

feeling little or no intellectual need. We present multiple examples for each category 

in order to draw out different nuances of the activity, and we contrast the observed 

situations with ones that would provide various types of intellectual need. Finally, we 

offer general suggestions for teaching with intellectual need. 
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Years of experience with schools have left us with a strong impression that 

most students, even those who are eager to succeed in school, feel intellectually 

aimless in mathematics classes because we—teachers—fail to help them realize an 

intellectual need for what we intend to teach them. The goal of this paper is to define 

intellectual need and explore some of the criteria for an absence of intellectual need. 

These criteria have emerged from reflection on our observations of classrooms. We 

will present and categorize classroom activities that we observed in which intellectual 

need was mostly absent. 

The notion of intellectual need resides in a theoretical framework called DNR-

based instruction in mathematics (for more detailed discussions of DNR, see Harel, 

2007, 2008a, 2008b, 2008c), although similar notions occur in other frameworks. 

Harel presents DNR as a system consisting of three categories of constructs: 

premises: explicit assumptions underlying the DNR concepts and claims, concepts: 

constructs defined and oriented within these premises, and instructional principles: 

claims about the potential effect of teaching actions on student learning. The initials 

D, N, and R stand for the three foundational instructional principles of the framework: 

Duality, Necessity, and Repeated reasoning. Relevant to this paper is the Necessity 

Principle, which states:  

For students to learn what we intend to teach them, they must 
have a need for it, where ‘need’ means intellectual need, not social or 
economic need (Harel, 2008b). 

 

Within DNR, learning is driven by exposure to problematic situations that result 

in a learner experiencing perturbation, or disequilibrium in the Piagetian sense. The 

drive to resolve these perturbations has both psychological and intellectual 

components. The psychological components pertain to the learner’s motivation, 

whereas the intellectual components pertain to epistemology: the structure of the 

knowledge domain in question, both for the learner as an individual and as the 

domain developed historically and is viewed by experts today. At present, DNR is 

primarily concerned with the intellectual components of perturbations, as emphasized 

in the Necessity Principle. In particular, the Necessity Principle implies that it is useful 

for individuals to experience intellectual perturbations that are similar to those that 

resulted in the discovery of new knowledge. At this point, historical and 
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epistemological analyses have identified five categories of intellectual need in 

mathematics (Harel, 2008b): 

 The need for certainty is the need to prove, to remove doubts. One’s 

certainty is achieved when one determines—by whatever means he or 

she deems appropriate—that an assertion is true. Truth alone, 

however, may not be the only need of an individual, who may also 

strive to explain why the assertion is true.  

 The need for causality is the need to explain—to determine a cause of 

a phenomenon, to understand what makes a phenomenon the way it is. 

For example, it is arguable (and has been argued historically) that proof 

by contradiction does not explain what makes an assertion true. Thus, 

one might continue to experience a need for causality regarding some 

assertion even after seeing an indirect proof that provided certainty. 

 The need for computation includes the need to quantify and to calculate 

values of quantities and relations among them. It also includes the need 

to find more efficient computational methods, such as one might need 

to extend computations to larger numbers in a reasonable “running 

time.” 

 The need for communication includes the need to persuade others than 

an assertion is true. It also includes the need to establish common 

definitions, notations, and conventions, and to describe mathematical 

objects unambiguously. 

 The need for connection and structure includes the need to organize 

knowledge learned into a structure, to identify similarities and 

analogies, to extend and generalize, and to determine unifying 

principles and axiomatic foundations. 

The need for causality does not refer to physical causality in some real-world 

situation being mathematically modeled, but to logical causality (explanation, 

mechanism) within the mathematics itself. The need for computation is not a 

student’s psychological motivation to solve drill exercises on algorithms, but her 

intellectual recognition that realistic and compelling problems require the 
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development of efficient computational methods for their solution. These five needs 

have driven the historical development of mathematics and characterize the 

organization and practice of the subject today (Harel, 2008b). DNR-based instruction 

is structured so that these same needs drive student learning of specific topics and 

help them construct a global understanding of the epistemology of mathematics as a 

discipline. Some intellectual needs have been recognized in other theoretical 

frameworks under other names. For example, Realistic Mathematics Education 

(Gravemeijer, 1994) recognizes several specific goals for the core activity of 

mathematizing which correlate with DNR’s intellectual needs: certainty, generality, 

exactness, and brevity. DNR’s Necessity Principle is an analogue of the RME dictum 

that students must engage in mathematical activities that are real to them, for which 

they see a purpose. Initially, this may mean problems arising in the “real” (non-

mathematical) world, but as students progress mathematics becomes part of their 

world and “self-contained” or “abstract” mathematical problems become equally real. 

Thus, what stimulates intellectual need depends on the learner at any given time.  

Our concern in this paper is to give examples of classroom activities in which 

intellectual need is absent, and to discuss how the structure of the activity eliminates 

intellectual need. We explore the implications of DNR for classroom practice by 

suggesting alternative teaching actions for each example based upon appropriate 

categories of intellectual need. 

When students participate in mathematical activities that stimulate intellectual 

need, we say that they are engaged in problem-laden activity. Unfortunately, many 

students are engaged in problem-free activity, in which they are driven by factors 

other than intellectual need and, as a result, do not have a clear mental image of the 

problem that is being solved, or indeed an understanding that any intellectual 

problem is being solved. The idea of problem-free activity can be related to Vinner’s 

(1997) concepts of pseudo-conceptual behavior and pseudo-analytical behavior. In 

contrast to conceptual behavior, which involves thinking about concepts and their 

relations or logical connections, pseudo-conceptual behavior looks like conceptual 

behavior but occurs when one applies a surface-level strategy that does not involve 

control, reflection, or analysis. Similarly, pseudo-analytical behavior can look like 

analytical behavior, but it involves procedural knowledge and superficial ideas of 
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similarity without analysis or understanding why things work. For instance, a pseudo-

analytical solution of the equation           is as follows: factor to get       

       , then set       and       to obtain the solution set      . A 

student using such a procedure views the problem as similar to           and 

tries to apply the solution method from this type of equation without considering 

whether it makes sense in the current problem. Students engaging in pseudo-

conceptual and pseudo-analytical behavior need not be aware of it; they are not 

usually choosing to apply a superficial strategy that eliminates the need to 

intellectually engage with a topic or problem, even though the behavior has this 

effect.  

Our notion of problem-free activity is similar to pseudo-analytical and pseudo-

conceptual behavior in that all involve thought processes that may be difficult for an 

observer to detect, and there is significant overlap between the phenomena. 

However, problem-free activity focuses on students’ understanding of a task and the 

needs it might stimulate, whereas pseudo-analytical behavior focuses on the thought 

processes that are taking place during the activity. It is possible for a student to fully 

understand and appreciate a problem posed but attempt a pseudo-analytical solution 

that involves only superficial similarity. Conversely, a student might be unclear about 

what exactly a question is asking, but nevertheless apply a thoughtful strategy that 

he understands the justification for. Vinner indicates that it is important for teachers to 

be aware of pseudo-conceptual and pseudo-analytical behavior, but he does not 

specify the teacher’s role in such behavior. In contrast, the teacher’s influence is 

central to our interest in the phenomenon of problem-free activity.  

Mathematical activity falls into a spectrum between extremely problem-free 

and extremely problem-laden, but many examples fall clearly on one side of the 

spectrum. For instance, students frequently participate in mathematical activities 

primarily in order to satisfy the teacher or get a good grade. Teachers may explicitly 

cite this as the reason for such activity, or they may focus on procedures to the 

extent that problems become simply opportunities to carry out the procedure that the 

teacher expects. The tasks that teachers present, what issues are discussed, and the 

way in which student questions or alternative solutions are addressed all have a 
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pronounced effect on where classroom activity falls in the problem-laden versus 

problem-free spectrum.  

We demonstrate the existence of problem-free activity through numerous 

examples. The examples are taken from our observations of two high school algebra 

teachers at a high-performing suburban school, several of whose classes were 

videotaped and transcribed. We present portions of the transcript with numbered 

lines, where “T” denotes the teacher and “S” denotes a student. In cases involving 

more than one identifiable student, numerical suffixes will be used (e.g., S1, S2). 

When statements are made by multiple students or unidentifiable students, they are 

denoted by “S*”. Our focus in this paper is not on the particular teachers and 

students, but rather the phenomenon of problem-free activity and how intellectual 

need might be restored. 

Despite the subjectivity inherent in our analysis--the intellectual need 

stimulated in a student depends on that student’s interpretations of problems, which 

we cannot observe directly-- we feel that the evidence for problem-free activity in the 

episodes presented is quite strong. Four categories of problem-free activity emerged 

from our analysis and reflection: 

1. The situation or immediate goal is not understood by students. 

2. The goal of the activity as a whole is unclear. 

3. There is no intellectual necessity for the method of solution. 

4. Students know in advance what to do, so the problem need never be 

considered carefully. 

In the following sections, we will discuss each of these types of problem-free 

activity, as well as various teaching actions that promote them. Each category can be 

manifested in multiple ways, so we present several examples to illustrate its different 

aspects. Some examples could be included in multiple categories of problem-free 

activity, but we classify them by the primary type observed. For each example, we 

suggest alternative teaching actions which could promote appropriate types of 

intellectual need. This both highlights the aspects of activity that inhibit intellectual 

need and illustrates some implications of DNR for classroom practice. Finally, we will 
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discuss general recommendations for teacher education that encourage problem-

laden activity.  

 

CATEGORIES OF PROBLEM-FREE ACTIVITY 

 

1. Situation or immediate goal not understood by students 

In this category of problem-free activity, students do not fully understand the 

“problem” that has been posed. They may have difficulty interpreting the situation 

involved, or they may be unclear as to what the goal of the problem is—what 

question they should try to answer and what a particular answer might mean. This 

may be due to the wording of the problem (e.g. it doesn’t contain a clear question to 

answer), the level of the knowledge of the students, or other factors. The students we 

observed generally had difficulty recognizing and checking their answers. They only 

checked their answer when required to do so, and in such cases the check became 

an extra prescribed step in the problem itself rather than a control mechanism to 

evaluate the validity of an answer. We found evidence of many cases in which 

students did not fully understand what the immediate goal of a problem is or what 

situation it describes. Such problems will rarely be meaningful for those students. To 

avoid this occurrence, teachers should emphasize the meaning of problems and 

provide examples where the goal is discussed before a problem is solved. Asking 

questions of students such as “how many answers might you expect?” or “how can 

we see whether this answer works?” can help clarify the meaning of a problem.  

Episode 1.1 

The following problem was given in class: 

A student has a snow-shoveling business, and charges $100 per 

customer for unlimited shoveling. However, he discounts the price by $1 

per customer for each customer over 20. What is the largest amount he 

can earn? 
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The following dialogue occurred between the teacher and one of the small 

working groups that, by means not captured on the videotape, obtained  x  40 , the 

correct number of extra customers that will yield maximum earnings. 

1. T: If x is 40, how do I figure out the amount of money that I 
made? 

2. S: I don’t know. 

3. T: How do I, if I have 20 customers and I have 100 dollars and I 
charge them 100 dollars. 

4. S: Wait, what? 40 is the extra he got. 

5. T: 40 is x, what does that mean? 

6. S: Yeah, x is… I thought x was like the extra money… Oh, you 
subtract it from the customers! 

7. T: Right. And so if I… 

8. S: That means you have 40 customers? 

9. T: 40 extra customers. 

 

In this episode, we find evidence that students acted on a problem without a 

clear intellectual purpose. The purpose appears to be social: the students introduced 

the variable “x” because that is the first step in the problem-solving approach they 

have learned. However, they do not appear to have a conception of what the problem 

is asking for, nor are they clear on what “x” represents in context. Despite having 

found the value of x, they cannot answer the question posed by the problem without 

heavy prompting by the teacher. A student says, “I thought x was like the extra 

money,” and the teacher explicitly corrects him, clarifying that      means there 

are “40 extra customers.” The students do not appear to have formed a coherent 

schema for the problem statement; they do not even know the unit that should be 

associated with x.  

A slight alteration in the problem statement might have made it more 

meaningful to students: asking How many customers would he want to have? instead 

of What is the largest amount he can earn? 

We would expect some students to initially suggest a large number of 

customers, perhaps 1,000. The teacher could then ask how much money he would 

earn with this number of customers. Presumably these students would be quite 

surprised to find that he would lose $880,000 under these conditions. This surprise 
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could lead to a desire to understand the problem more fully and explore whether he 

can maximize revenue--and then how many customers would be required to do so. 

Hopefully, the idea that the student earns very little with a few customers, then earns 

more for a while, then eventually starts losing money would lead to the suggestion 

that there should be a maximum, and a need for causality in understanding why this 

is so. Note that such reasoning would implicitly use the concepts of derivative and 

critical point, as well as the intermediate value theorem. In response to student 

questions about whether this situation makes sense, the teacher could lead a 

discussion of mathematical models, which may not approximate reality or even make 

sense for extreme values of their parameters (does the discount continue for 

x>100?). After the problem is well-understood and the idea of finding a unique 

maximum emerges, students could be put into groups to actually find the maximum. 

At this point, they should be acting from a need for computation. Students might 

guess and check or make use of a table, but in this case it would probably be easier 

to introduce a variable (which should be clearly defined) and express revenue as a 

function of this variable. The problem would then lead to a need for a method to find 

the maximum of a quadratic function; this could be achieved graphically using 

symmetry or inspection, or algebraically by deriving the formula for the vertex of a 

parabola.  

Episode 1.2 

The teacher models how to solve simultaneous linear inequalities, but does 

not provide a clear problem that is being solved.  

1. T: Systems of linear inequalities. So just like we had the 
equations, right, when we graphed lines, we also graphed 
inequalities where we shaded a region. With the systems we’re 
going to end up shading a couple of regions and see where 
those regions overlap. OK, so let’s take a look at a couple of 

examples. So I want to graph    , and I also want to graph 
    . I want to see where those two intersect and that’s 

going to be my solution. So if I look at    , first I have to 
graph    . Then I need to look at the region where the x 
values are greater than 2. OK and again I’m going to have a 
solid line because of the, I need to include the points that are on 

the line. Next I’ll look at     , dashed line because the points 
on the line are not included, and I want to shade the region 
where my y values are less than negative one. So where do 
these overlap? 
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2. S: The green. 

3. T: The green, right. The green part. OK, so this is my solution, 
right… so when we start working these problems I need you to 
be able to identify this region… I need you to understand that 
this is the solution, right? Points up here do not satisfy both 
inequalities. Points here do not satisfy both inequalities. So 
you'll need to show me this region. 

 

A method is being presented to do something, but it seems unlikely that 

students perceive a problem or goal for this activity. They may learn the procedure: 

when you see two linear inequalities, draw a picture of this kind and try to figure out 

which region to shade. However, the usefulness of that picture and what exactly it 

represents are not discussed; nor is the picture compared to an algebraic solution. 

The teacher’s statement, “I need you to understand that this is the solution,” presents 

strong social need (this is important to the teacher) but no intellectual need. Since it 

is not clear what “this” is the solution to, students are probably confused. Nowhere in 

the presentation is there a clear statement of the purpose of this activity, nor is there 

any emphasis on how the activity corresponds to a problem. 

Obviously, it would be useful to present a problem here, which could be stated 

as: which points in the plane have x-coordinate at least 1 and y-coordinate at most -

1. Students could be asked to give examples of such points, which they should 

readily come up with. Then the problem of displaying all of them could be 

presented—a need for communication. This simple problem is then situated within an 

important mathematical context: how to effectively describe an infinite set. The 

condition of x-coordinate being at least 1 could be related to the point lying on or to 

the right of the line x=1. The condition of y-coordinate being at most -1 means that 

the point must lie below the line y=-1. Thus, we are looking for points on or to the 

right of the line x=1 AND below the line y=-1. The appropriate region could then be 

shaded on the graph as a way of presenting this infinite set. 

Episode 1.3 

The teacher presents an application for what the class has been working on: 

finding the x-intercepts of a parabola. 

1. T: How are we going to use this in real life? Mr. Jamison owns a 
manufacturing company that produces key rings. Last year, he 
collected data about the number of key rings produced per day 
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and the corresponding profit. He then modeled the data using 

the function               , where   is the profit in 
thousands of dollars and   is the number of the key rings in 
thousands.  

2. T: OK, he is going to make a whole bunch of key rings. He is 
going to make thousands of key rings, and the number of key 
rings he makes if he makes ten thousand key rings, then k is 
equal to what? … 

3. S1: Key rings. 

4. T: k is the number of key rings in thousands. So if he made ten 
thousand key rings, what is k equal to? 

5. S2: 10. 

6. T: k is equal to? 

7. S1: 10. 

8. T: 10, OK, and P is the profit, if he made ten thousand key rings 
and we plug in 10 for k, we’ll find out how much money he 
made. And if it turns out that this number over here is 5, how 
much money did he make that year? 

9. S1: $5000. 

 

It sounds like the teacher is helping students explore the problem in this 

episode, but in fact no question has been posed—a potential indication of problem-

free activity. Moreover, the students are acting on an object--the string of symbols 

               —whose purpose is not clear. The teacher later examines 

how to find the maximum profit using a graph but, in order to necessitate the profit 

function, this question should be part of the original statement.  

This episode continues after the teacher has found that the maximum profit 

occurs when 3000 “keys” are made: 

1. T:  If we own a company that is producing keys, for some 
reason he is going to make more and more profit until he makes 
3000 keys, after he makes 3000 keys he is losing money. Now 
why is that? That could be because his factory is idealized at 
this and if you try and work people too hard then they don’t 
produce as well. Maybe their quality goes down. Maybe the 
machinery starts breaking down as they produce more keys.  

(….) 
2. T: Is he making a profit down here? 
3. S*:  No. 
4. T:  No, what happens when it’s down here? 
5. S*:  [inaudible] 
6. T:  Losing money, and the union went on strike or 

something so that now he is losing money instead of making 
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money. OK? So this is his goal to try to get here, but he wants 
to make sure that he makes a profit. Where is that point on the 
graph where he is not making money, he is not losing money? 
It’s called a break-even point. 

(….) 
7. T:  Tell me how many keys he has got to make to break 

even. 
8. S: How many keys? 
9. T:  How many keys, key rings, must he produce? 
10. S:  6000. 
11. T:  6000, why? I want you to find that mathematically. How 

many keys, key rings has he got to produce to break even? He 
just discovered that he has to pay taxes on all his profits, so he 
doesn’t want to make money, he doesn’t want to lose money, 
he wants to be right there where there is no taxes. How do we 
find that point? 

 

This teacher does help students explore the problem and understand the 

meaning of the function P(k) in context as well as its graph, making connections 

between the geometric and algebraic representations. However, the problem 

statement is still not made fully clear. The term “modeled” is not mentioned in the 

discussion—they take P(k) to be the exact profit. The meaning of “corresponding” 

profit is also not made clear; it is apparently supposed to be daily profit (rather than 

annual profit as the teacher implies in line 8), but the causal chain from production to 

sales must be too long for each day’s production to determine that day’s profit.  

The teacher begins to refer to “keys” rather than “key rings,” which seems to 

confuse a student (line 17). After it is found that the maximum profit occurs when 

three thousand “keys” are produced, the teacher tries to make a connection to the 

physical reality of the situation by suggesting reasons why the profit decreases 

beyond that point. Unfortunately, the reasons he gives (people or machinery start 

breaking down, line 10) are unrealistic; it seems clear that the intended reason for 

decrease in profits as production goes up is that there will not be enough demand for 

that many key rings unless the price is lowered. The lack of realistic connections in 

this problem may have caused it to be viewed as artificial: a way to test what 

students know rather than a meaningful application of their knowledge. Recall that 

the teacher brought up the problem by saying “How are we going to use this in real 

life?” 
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When a student suggests that 6000 “keys” must be produced to break even, 

which is an incorrect answer, the teacher asks why. However, the teacher does not 

provide an opportunity for this student to check or justify his answer. After saying “I 

want you to find that mathematically,” the teacher continues his unrealistic 

interpretation of the problem: “He just discovered that he has to pay taxes on all his 

profits, so he doesn’t want to make money, he doesn’t want to lose money, he wants 

to be right there where there is no taxes” (line 20). Following the episode quoted, the 

teacher launches into a discussion of the quadratic formula, which could further 

support the conclusion that the “problem” was intended to be a chance to practice 

(among other things) the quadratic formula. Note also that the teacher’s questions 

seem to call for a single “break-even point” even though the quadratic formula yields 

two answers (5 and 1), both of which are physically realizable. This conflict is not 

mentioned in the class. 

For this problem, it would be useful to ask from the beginning: how many key 

rings will Mr. Jamison choose to produce? The discussion of the profit function would 

then be quite reasonable: we have some data on which to base this decision, so we 

should make sure we understand it. Finding the profit when 10,000 key rings are 

produced daily would be a useful exercise. However, the teacher could also ask 

exactly what “profit” means, to make sure that students understand the idea. He 

could discuss the act of modeling the data to obtain an equation for profit in terms of 

daily production and the fact that production must remain constant for a long period 

in order for daily profit to match up with daily production. The teacher could ask 

whether or why students expect there to be a unique production level that maximizes 

profit. Graphing the solution helps to demonstrate what is happening but not why, 

leading to a need for causality. If students thought about the situation for several 

minutes, some might suggest the issue of supply and demand: that larger numbers of 

key rings cannot be sold unless the price is lowered. The relevant data for calculating 

profit would be key rings sold, not key rings produced. It would be reasonable at this 

level for students to consider how the equation                  might have 

been obtained, and why units of 1000 are convenient. That is, in order to sell k 

(thousand) key rings, the price must be set at        dollars each, and the fixed 

cost for running the factory is $10,000 per day. Once these issues are understood, 
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the teacher could ask what range of production levels of key rings will allow Mr. 

Jamison to make a profit. This would lead to the issue of finding the boundary points 

of this range where he breaks even—the k-intercepts of the function. Through this 

need for computation, students could realize that k in this context plays the role of x 

in the standard quadratic function, and that the intercepts can thus be found by 

factoring or applying the quadratic formula. 

Episode 1.4 

Imprecise definitions of variables such as “b = base, h = height” are quite 

common in many classrooms. Such imprecision can lead to a failure to accurately 

represent the problem situation. We see an almost complete lack of referential 

definitions during this episode, in which one of the researchers (denoted by H) 

interacts with several students in the class.  

Problem: if Kim can paint a house in 8 hours and Ron can paint it in 4, 

how long will it take them together?  

1. S1: x is Ron and 2x is Kim. 

2. S2: Yeah, Kim goes twice as slow. 

3. S1: Yeah, Kim goes twice as slow as Ron so we did 2x and 
then… 

4. S2: Plus x. 

5. H: What is x? 

6. S1: x is… 

7. S3: x is like the, what do you call it? 

8. S1: The base. 

9. S3: The amount, the amount of time. Like the amount of time 
it’s going to take to, to take to paint the house. 

(…) 

10. H: So x is how long they work together. 

11. S1: Yeah. 

12. H: OK. So all right. 

13. S1: Well x, x is just how one of them, Kim does it, cause she 
does it twice as slow as Ron and so 2x… 

 

These students associate expressions like x and 2x with the entire problem 

situation, or with particular characters in it, and cannot say what quantities are being 
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represented. Perhaps because they recognize that their definitions are inadequate, 

the students change the meaning of “x” and “2x” several times. From “x is Ron,” they 

proceed to “x is the base,” perhaps a carryover from word problems involving the 

base of a triangle or rectangle. After some probing, they seem to agree that x is how 

long they work together to build the house. However, they still want to somehow add 

x and 2x, reverting to the idea that x is just how long it would take Ron or Kim alone 

(which is already known). Throughout the process, these students do not appear to 

have a goal in mind besides the generic ‘write an equation and solve for x.’ In 

particular, they do not demonstrate a coherent representation of the problem 

situation even after exploring what quantities x might represent. 

Here it would be useful to pause to carefully define any variables that are used 

to solve a problem so that everyone understands their meaning—satisfying a need 

for communication. Often, as is possible in this case, we define a variable (unknown) 

for the quantity we are seeking. Thus, it is reasonable to let x be the time (in hours) 

needed for Ron and Kim together to paint the house. However, it is also possible to 

solve this problem without using variables: by enacting the situation with a diagram or 

adding the individual rates of painting to find the joint rate, from which the time to 

paint can be found. Students should be shown that it is useful to understand the 

problem situation and think about how the question might be answered before 

introducing one or more variables. 

 

2. Goal of the activity as a whole is unclear 

Students may understand what a particular problem is asking, but they often 

do not perceive an overall goal behind working such problems. When they do not see 

what they are really learning or what the purpose of such ideas is, students are 

unlikely to find problems meaningful. Students will often continue working in order to 

satisfy the teacher, but they occasionally ask about the purpose of activities. In some 

cases, the teacher may not have an overarching goal for a set of problems beyond 

practicing for the test, and thus it is impossible for him to satisfactorily answer such 

questions. Alternatively, a teacher may have a clear overall goal but feel that 

students need not be aware of it or that asking about the purpose of tasks is a 

challenge to her authority. 
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Episode 2.1 

One teacher presents tasks that require students to practice skills they should 

know. Unfortunately, the tasks are pure symbol manipulations that may not represent 

meaningful problems for the students. Some examples are: 

Factor           . 

             . 

            . 

              . 

            . 

Multiply             . 

What is the degree of the polynomial              ? 

These examples are unlikely to stimulate intellectual necessity: why does one 

care about being able to factor or multiply isolated polynomials out of context? The 

directions in the problem may be clear, but the purpose of solving such problems is 

not. In fact, we never observed this teacher explain the purpose of factoring, which is 

thus a prime example of an action that students carry out without a clear intellectual 

purpose.  

Spending more time developing the need for multiplying and factoring 

polynomials before launching into lots of practice problems could be helpful in 

creating necessity—generally, a need for computation. Polynomials come about in 

many contexts and can be used to approximate essentially any function (though 

students at this level will not know about Taylor expansions). Thus, it useful to 

characterize their behavior in several different ways. The long-run behavior depends 

on the term with the highest power of the variable, thus necessitating the idea of 

degree. Finding zeros is generally important, and this necessitates both factoring 

(through the zero-product property) and the quadratic formula.  

Episode 2.2 
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Students are assigned problems to simplify radical expressions, which are in 

simplest form ‘by definition’ if they comply with the three laws projected on the 

screen.  

On Screen: A radical expression is in simplest form when all three 

statements are true. 

(1) The expression under the radical sign has no perfect square factors 

other than 1. 

(2) The denominator does not contain a radical expression. 

(3) The expression under the radical sign does not contain a fraction. 

 

The teacher presents very explicit requirements for the form of solutions. 

However, the task of simplification is not necessitated; there is no discussion of why 

such a form would be desirable. Only social necessity is provided: the implicit idea 

that credit will only be given to answers in this simplest form. Once again, the 

objective of particular problems may be clear, but the purpose of working such 

problems is not. 

The lesson could be presented very differently. Rather than beginning with 

fixed “laws,” the teacher could have assigned several problems whose answers were 

radical expressions that could be derived in several ways—so that different-looking 

answers would be likely to arise. Comparing student answers to each other or to an 

answer in the textbook could lead to a need for certainty: the students have to figure 

out which answers are correct. This need might lead the students to find a method for 

comparing answers that look different to see whether they have the same value. In 

this context, the easiest way to compare answers would be to square them and 

check whether the resulting integers, or fractions put into lowest terms, match. 

However, students might wish to avoid having to perform this computation to check 

their answers. The desire to quickly check answers might lead to a need for 

communication whereby a standard form for reporting answers would be developed. 

With some prompting, students would probably choose a standard form that would 

obey the teacher’s laws: taking out all perfect squares and fractions, and agreeing to 

put the radical only in the numerator of a fraction. In this way, students would still be 
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able to simplify radical expressions, but they would also understand the purpose of 

such simplification. Moreover, the process of thinking about such issues should 

reinforce the idea that radical expressions have values that remain the same even 

when the form is changed, such as when simplifying. It could also raise deeper 

questions such as: is the standard form unique?  

 

Special case: students ask for intellectual need, but receive only social need 

Episode 2.3 

After students work on the snow-shoveling problem (from episode 1.1), the 

following exchange occurs: 

1. S1: Mr. [Teacher], why does this matter? 

2. T: What do you mean? 

3. S1: Like who cares? 

4. T: Well, you care if you want to get a good grade on your test. 

5. S1: OK, no, but like in real life? 

6. T: Well, we do it because we love math, right? We enjoy a 
challenge. 

7. S2: We love math. 

 

This episode highlights two ways teachers can explain the goals for the 

material they teach: because it will be on a test, or because it provides a nice 

challenge. Note that the student explicitly rejects the social necessity to do well on 

the test as justification for the usefulness of what is being taught, but the teacher 

does not provide any intellectual necessity for it. In addition to the frustration this 

answer might cause for students who do not already “love math,” the exchange sets 

up an environment in which students do problems only to get good grades or 

experience a fun challenge. While these can be motivations for working on problems, 

they are not the purpose of such problems.  

Teachers should make sure that activities they assign have specific goals and 

that those goals are communicated to the students. Teachers should also be 

prepared to provide an intellectual answer to the question of why one would care 

about the particular lesson they are teaching. Here, the teacher could have 
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mentioned that this is a real (modeled) situation raising a practical mathematical 

question. He could also describe how these problems teach general lessons such as 

optimization under a condition involving diminishing returns.  

3. No intellectual necessity for the method of solution  

We expect teachers to help students develop tools that can be used to solve 

problems. However, the type of tools and ways they can be acquired vary greatly. 

Students are sometimes given a method for solving a problem along with the 

problem itself. They may be directly shown how to do all problems of a given type, or 

they may be told that a problem will use the procedure they just learned. The format 

for answers may also be strictly prescribed (sometimes arbitrarily), as occurs in 

episode 3.1.1 below. When the method for solving a problem is not necessitated, the 

students’ task can become applying a method rather than answering a question. 

Such activity is likely to be problem-free even when the original problem could have 

been meaningful: students want to resolve the situation, but they have to use the 

solution method that has recently been taught even though the situation is easily 

resolvable through other means. For instance, a problem intended to require 

algebraic manipulation may be easier to solve through guess and check or arithmetic 

calculation. This category of problem-free activity is important and pervasive. 

Teachers can and should require that students be able to explain and justify their 

solutions to the class. However, when students are required (even implicitly) to use 

only the most recent procedures in solving a problem, that problem loses intellectual 

legitimacy. Students who were initially interested in the problem may even come to 

reject it, viewing the task as simply an excuse to practice a method that the teacher 

says is important. On the other hand, if students are given free reign in solving a 

problem and then realize through subsequent discussion that the standard approach 

is preferable to other solution methods, we believe they will be much more likely to 

appreciate and internalize the standard method. 

Episode 3.1.1 

The class is working through the following problem: 

When a popular brand of CD player is priced at $300 per unit, a store 

sells 15 units per week. Each time the price is reduced by $10, the sales 
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increase by 2 per week. Help the store manager to build a function that 

gives the total sales revenue for each $10 reduction in the CD player 

[sic]. What selling price will result in weekly revenues of $7000? 

 

1. T: Right here it says help the store manager build a function 
that gives the total sales revenue. 

2. S: But why does the store manager need a function if he knows 
the answer? 

3. T: Because he wants to be able to substitute any number in for, 
depending on the week, what he’s going to sell. 

4. S: He has a table. He can just look at the table. It’s much easier 
than a function. 

5. T: What about – No it can’t. What if he decides he wants to start 
at $350? 

6. S: Then he can make the table up by $50. 

7. T: A function, please. Thank you. 

8. S: Well, will you show me how to do the function? 

 

This student does not perceive a purpose behind the teacher’s interpretation 

of the problem: “why does the store manager need a function if he knows the 

answer”? If an answer is important and it can be found without a function, there is 

little intellectual need to find a function. The student argues that, for this particular 

situation, a table would be “much easier” while still providing the needed information. 

The student is correct that, since a store manager in this situation would probably be 

interested in a small range of discrete values, a table could provide an efficient 

representation of the data. Representing data efficiently in a realistic situation is likely 

to constitute a meaningful problem for students, but the teacher’s insistence on 

finding a function reveals this task to be mostly a front for getting students to use the 

most recent technique they have learned. The teacher begins by trying to give 

intellectual reasons for a function: “to substitute any number” (Line 3) and “what if he 

decides he wants to start at $350? (Line 5). However, when the student argues 

persuasively that these reasons are inadequate, the teacher turns to purely social 

need: “A function please. Thank you.” In the end, he requires a prescribed form for 

the answer to a seemingly arbitrary question.  
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The CD player problem is isomorphic to the snow-shoveling problem (episode 

1.1). However, the teacher expects students to use arithmetic sequences and their 

properties in the solution method for the CD player problem. Sequences had not yet 

been covered when the snow-shoveling problem was assigned, but they were 

apparently discussed in the days before this episode, which continues the discussion 

of the CD player problem.  

Episode 3.1.2 

1. T: How do you get [pause] how did you get this dollar value 
[7000]? 

2. S1: 300*15, 290*17, [pause] 

3. T: Right. You multiplied those two things together, right? 

4. S1: Oh. 

5. S2: So that’s the formula? These are the formulas? 

6. T: Well, these are a start for what they look like. 

7. S2: But wouldn’t this one be…this one…what do you mean? 

8. S1: I got it. 

9. T: This one’s decreasing by $10, right? 

10. S2: Mmhmm. 

11. T: And then you can simplify these. Can you? 

12. S2: Yeah. By like just making it simpler but then [pause] so do 

we leave n in the formula? 

 

In this exchange, the students have already found the answer (a selling price 

of $200) and explained their reasoning, but the teacher wants them to justify their 

result using what they know about sequences rather than by working through 

possibilities. This is a case where the ‘problem’ has already been solved but students 

continue working to satisfy the teacher. We see that S2 picks up on the expectation 

that there will be two formulas—corresponding to the distinct arithmetic sequences 

that should be used in solving this problem. The students do not appear to perceive 

an intellectual reason for the teacher’s method: they are confused by the instruction 

to simplify and appear to want to revert to considering specific values of n rather than 

a general formula. 

Episode 3.1.3 



Fuller, Rabin & Harel  

 

101 – v.4(1)-2011 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

Later in the same class, the teacher circulates among students that are 

still working on the CD player problem: 

1. S3: What would you use for the common difference? –10 or 2? 

2. T: Well, I’m looking at two different sequences here, right? 
Here’s one sequence, here’s another sequence. 

3. S3: So you’re actually writing two equations? 

4. T: Mmhmm. 

And later: 

5. T: No, look at this. Look at this right here. 300, 290, 280, 270. 
What I want you to do is I want you to generate a formula for 
this sequence.  

6. S4: x-3? 

7. T: x-3? 

8. S4: Oh, wait, no. For the second one [inaudible] x+2. 

9. T: x+2? 

10. S4: See, 15+2 is 17, 17+2 is [pause] 

11. T: So that’s a recursive formula, right? I want the explicit 
formula. And then do the same thing here. 15, 17, 19 [pause] 
get me a formula that’s going to generate this sequence. OK? 
So I want to see two formulas. One for this sequence and one 

for this sequence. 

 

The teacher continues to advocate a single method of solution that has not 

been necessitated. It appears that these students approached the problem in their 

own ways, although we do not observe how they attempt it and the teacher never 

asks for an overall account of student reasoning. Instead, he leads students to follow 

the method he wishes them to use by prescribing actions they should perform: “300, 

290, 280, 270. What I want you to do is I want you to generate a formula for this 

sequence” (line 5) and “… get me a formula that’s going to generate this sequence. 

OK? So I want to see two formulas” (line 11). The teacher does not say why these 

actions will lead to the desired solution, nor does he explain clearly to students why 

their methods will not work or are not appropriate. Overall, it appeared that the task 

of using the teacher’s method correctly was more difficult for students than the task 

of ascertaining by their own means the selling price that will result in revenues of 

$7000.  
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The teacher could have taken the first student’s arguments about using a table 

as an opportunity to compare a formula to a table of values as different ways to give 

information about a function. Again, it would have been useful to ask where the store 

manager should set the price, which could create intellectual necessity for a function 

giving sales revenue in terms of $10 reductions in price. The table might suggest a 

maximum, but an explicit formula for the function would provide more confidence that 

the maximum is absolute, (given that parabolas have one vertex) satisfying a need 

for certainty. There will also be a need for computation if the optimal price is not a 

multiple of $10. Once there is a reason to seek a formula, the teacher could aid 

students who are having trouble by suggesting a connection to finding formulas for 

arithmetic sequences. However, students should be free to generate the formula for 

revenue in any way they can.  

Episode 3.2 

Students are having trouble with the problem, If it takes a printer 20 

minutes to print 400 stickers, how long will it take to print 1100 stickers?, 

and the teacher suggests a simpler version. He is at the front of the room 

addressing the entire class while various students respond.  

1. T: If it takes a printer 20 minutes to print 400 stickers, can you 
tell me how many stickers it could print in one hour? 1200, 
why? 

2. S*: [inaudible] 

3. T: You multiply 20 times 3. You recognize that there’s 60 
minutes in a hour, so 20 minutes is 1/3 of that. You multiply 20 
minutes times 3. So what you’re talking about, we got a name 
for that in Math. What do we call that? When two numbers are 
compared to each other. Three is to four? I got [pause] I’ve got 
a portion of a dollar here, right. I’ve got 1/4 of a dollar. What do 
we call that? What do we call that 1/4? 

4. S*: A quarter. 

5. T: You’re right. What do we call that comparison of numbers. 
One to four. 

6. S*: Ratio. 

7. T: A ratio… Can we make, and by the way we combine two 
ratios together, that’s called a ratio is equaled to something 
else. What do we call that? 

8. S*: Cross-multiply? 

9. S*: Fractions? 
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10. T: Well, they are fractions. We cross-multiply to solve it, but 
what do we call this, this is called a [pause] It starts with a p? 
Starts with a pr? Pro-? You’re a tough crowd folks, prop, 
proportion. 

(…) 

11. T: Now, what did you tell me before when I asked you to figure 
out how many, how many stickers could be printed in an hour? 
Why? What was the ratio? 

12. S*: [inaudible] 

13. T: Yeah, but how did you get that? How did you figure it out? 
What was the ratio you used? 

 

A student came up with the answer (1200) to the simplified question without 

using an explicit ratio. The purpose of the discussion seems to be for the students to 

understand the teacher’s reasoning and learn to construct explicit proportions. While 

the teacher explains the steps he used to find the solution in line 3, he does not 

construct an explicit proportion. The focus instead seems to be on the conversion 

factor “60 minutes in an hour,” by which 20 minutes becomes 1/3 of an hour. The 

implicit idea that 3 times as many stickers will be printed in 3 times as long a time 

interval involves proportional reasoning, but this fact may not be clear to the 

students. Most of this episode is devoted to naming things and identifying how they 

appear rather than how proportional reasoning is used. The teacher asks for “the 

ratio” from the problem twice (lines 11 and 13) without specifying which ratio. 

Presumably, he has in mind some form of the proportion: 

 
                               

 

 
    

 
                              

      
. 

Based on their lack of clear responses, this interpretation does not seem clear 

to students. Moreover, because the simple problem given is a case for which the 

teacher’s implicit reasoning is easier than constructing a proportion, there is no 

necessity for using a proportion. After returning to the original problem, the teacher 

presents the correct proportion: 
      

     
 

            

             
. However, he does not devote 

much attention to the link between informal proportional reasoning and this explicit 

proportion. His reasoning on the simpler version of the problem would suggest a 

different way of thinking about the situation: that it will take          times as long to 

produce          times as many stickers, so the answer is given by 
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                       . The problem may have initially stimulated intellectual 

need, but there appears to have been only social need for using an explicit 

proportion. 

After offering the simpler version of the sticker problem, the teacher could 

have asked how long it would take to print 800 stickers and gotten the answer from 

students, then he could have asked students if anything is remaining constant in 

these situations. This could provide a need for connection and structure in that 

students want to figure out how the simpler problem formulations are related to the 

original one. Students would probably see that something is the same in these 

situations, but they would have trouble articulating it. They might at least recognize 

that some of the same numbers, 20 and 400, are being used. The teacher could 

point out that such a problem cannot be solved without assuming that the machine is 

“running at a constant rate” and ask the class for suggestions as to exactly what this 

should mean. Through discussion, they could realize that the rate of stickers 

produced should be treated as constant in these situations. This could be formalized 

into an equality of ratios that holds regardless of what time interval one examines: 

                      

    
 

                      

    
. 

At this point, students could be led to see that the left side (for instance) will 

always be 
            

      
 and that the right hand side will contain an unknown quantity in 

either the numerator or denominator. If this equation can be solved for the unknown, 

the problem will be finished. The teacher could then ask for comparisons between 

this explicit use of a proportional equation and the informal reasoning applied by both 

teacher and students. He could also assign further problems involving proportions 

and suggest that students try them using informal reasoning and explicit use of a 

proportion to see which they prefer. The informal reasoning may be deemed simpler, 

but the explicit proportion might be considered more general and (after practice) 

more clear.  

Episode 3.3 

The teacher is leading the class through a solution to a worksheet 

problem, allowing various students to respond. The class used a 

mnemonic called LESA [Let the variable stand for something, write an 
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Equation, Solve the equation, Answer the question] to solve word 

problems. 

1. T: Number 5 says, find two consecutive integers such that the 

sum of their squares is 61, so “L”, what are our variables? 
C’mon, folks. 

2. S*: 2 and 61. [hard to hear] 

3. T: What is it? 

4. S*: 2 and 61. 

5. T: Are those variables? 

6. S*: A and B. 

7. T: What are we looking for? 

8. S*: Two integers that go in 61. 

9. T: OK, we’re looking for two integers, so I’ll call integer A and 
one integer B.  

(…) 

10. T: OK, so can we come up with two equations for our 
unknowns? 

11. S*:           

12. T: Everybody agree with that one? 

13. S*: I guess. 

14. T: OK, what’s the other equation? Do we have another equation 
here? 

15. S*: You get the 61 and bring it to the other side. 

16. T: Hold on, I don’t want to solve them. I am looking for a second 
equation here. I got two unknowns, I need a second equation 
here. 

17. S*: Are you supposed to do like     because it’s like a 
consecutive number? 

 

In this episode, no intellectual necessity is presented for either introducing 

variables or finding a second equation. Rather than asking the students for 

suggestions, the teacher leads the class through a prescribed method without 

exploring other ways to think about the problem. Students do not object to this; they 

seem used to following a method without clear goals. For instance, one student 

suggests “2 and 61” as the variables. We surmise that he is acting based on the 

social need to find something that can act as a variable in the problem; he chooses 

the only two numbers present in the problem statement. In this context, the teacher’s 
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question “Are those variables?” is meant to suggest that this response is incorrect, 

rather than to elicit the student’s understanding of the term “variable.” Other students 

pick up on this hint and suggest “A and B” before choosing what the variables are to 

represent, suggesting that the primary necessity for variables is social necessity. 

After eliciting the equation         , the teacher does not discuss why a single 

equation with two variables cannot be solved. He simply says “I don’t want to solve 

them” (our italics) and “I need a second equation here” (line 16). The teacher could 

have used this opportunity to necessitate a second equation by helping students 

realize that they will not get a unique answer without additional constraints. Instead, 

he appears to follow a fixed rule that a single equation in two variables cannot be 

solved. The focus in this episode is on correctly applying the LESA approach rather 

than on necessitating the particular methods that are used to solve this problem.  

In order to implement the necessity principle, problems should be difficult 

enough to warrant the desired solution method. In this case, the problem is simple 

enough that it could be most easily solved by guess and check or systematically 

trying integers. A more sophisticated type of reasoning, which the teacher could 

model, would be to notice that the average of the squares is 30.5, and one must be 

below the average (25), the other above (36). If the goal is to develop students’ ability 

to solve systems of equations, then more difficult problems should be given for which 

students are given the opportunity to guess but are unlikely to do so successfully. 

Once there is a need to write down equations, then questions concerning how the 

number of unknowns and number of equations relate to the solution set can be 

posed.  

Generally, the use of variables can be necessitated by a need for computation 

(if the unknown numbers are very large, or not integers), for communication (to 

explain the reasoning used to solve the problem), or structure (when systematizing 

the approach to apply to a class of similar problems). 

 

4. Students know what to do in advance, so the problem need never be 

considered carefully 
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Teachers rarely want their students to encounter the full difficulty of a 

significant real-world problem. Some difficulties must be avoided or minimized, 

requiring teachers to choose which difficulties to avoid and which to exploit for 

creating useful disequilibrium. In an effort to make things easier for students, 

teachers will sometimes give problems in standard forms that invite students to use a 

known method rather than exploring the meaning of a problem and different ways to 

solve it. Even when a particular method is not imposed on students, such actions can 

deprive students of learning opportunities, because it is precisely the difficulties and 

confusion in solving problems that destabilize students’ current knowledge and 

require them to extend their thinking. When students know what they will do to 

complete a task before engaging with a problem, they are involved in problem-free 

activity. 

Episode 4.1 

The teacher is showing how to find the intercepts of a cubic polynomial in 

order to graph it. The cubic has an explicit factor of x, but he also 

promises that the remaining quadratic is factorable: 

T: …And I end up with a quadratic inside the parentheses. And in this 

case I can factor what’s inside the parentheses. If I’m not able 
to factor what’s inside the parentheses, we can still find the x-
intercepts by using the quadratic formula or completing the 
square, but for right now, for what we’re going to start off with, 
I’m gonna give you equations that are – that we’re able to factor 
in here. 

Later in the same discussion: 

T: And in fact, on the homework that I give you tonight, I’m not gonna 
ask you to sketch any graphs, I’m just gonna ask you to solve 
the equations…And for right now, I’ll worry about you guys 
finding the linear factors for yourself later – for right now, if I 
give you one that’s gonna need a linear factor, I’ll just give you 
a linear factor, and then you can factor the quadratic after you 
use the factor that I give to you. 

 

Intellectual need is stimulated when a student is led to desire a resolution of a 

situation—which is unlikely to happen if the teacher outlines how to resolve the 

situation in advance. In this case, the teacher sets up an explicit didactical contract 

(Brousseau, 1997) that problems will be given in such a way that students only have 

to supply certain known steps—the rest is set up for them. This creates a social 
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partnership in which students need only ‘do their part’ by applying well-known 

methods in specific ways. They must divide the cubic polynomial by the given linear 

factor, factor the remaining quadratic, and then read off the solutions. Because it is 

possible to perform these steps without considering the meaning of the problem, 

students need not understand the situation or the purpose of actions they perform.  

Instead of promising that students will not have to deal with finding intercepts 

when an equation does not factor nicely, the teacher could ask more probing 

questions to examine student conceptions and make them consider problematic 

issues. For example, he could ask “how many x-intercepts can a quadratic 

polynomial have?” and “how many x-intercepts can a cubic polynomial have?” These 

questions could lead to a need for causality if students want to know why it is that a 

cubic will always have at least one x-intercept but a quadratic may have none. They 

may be able to see that this happens from several graphs, but they are unlikely to 

understand why similar equations have different numbers of x-intercepts. This could 

lead to interesting discussion and possibly methods for bounding the number of 

intercepts. He could also ask students how they might ascertain whether a quadratic 

equation can be factored (over the integers). This would feed into a need for 

computation if students want to know when they should be able to factor easily and 

when they need to use the quadratic formula. Such considerations would force 

students to consider the problems they are working on carefully and to gauge how 

difficult finding the solution might be.  

Episode 4.2 

The teacher circulates around the room, talking to different students as 

they work on exponential growth and decay problems: 

1. T: So, this is 1.63. What’s my growth factor? What’s my growth, 
what’s my rate, what’s my percent of increase? 

2. S: I don’t know. 

3. T: Look right up there. If  b  is 1 plus the percent, right? 

4. S: Oh, so 1 plus 1.63? 

5. T: I, no, I already did, that’s already added to 1, so what’s 1.63 
minus 1? 

(….) 

6. T: What did you do for 21 [another problem]? 
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7. S2: [inaudible] 

8. T: So you did, you did 1 minus 0.11. 

9. S2: Yeah. 

10. T: Right. 

11. S2: We got 0.89, yeah. 

12. T: Right, so that’s 1 minus 0.11. 

13. S2: Yeah. 

14. T: Did you, did you do [pause] how did you [pause] did you do 
that on your calculator? 

15. S3: Yeah. 

16. T: Let me see. No, no, no, I want to see 1 minus 11 percent on 
the calculator. 

17. S2: No, we didn’t do it like that. 

18. T: Oh, okay. 

19. S3: We did 100 minus 11 to get 0.89. 

(….) 

20. T: So I did put some notes on [my website], but this is all it is 
right here. Growth factor is b is 1 plus the percent, decay is 1 
minus the percent. 

 

Students seem to be working on homework from the textbook, but the problem 

situations are not stated or discussed by the teacher in this episode. The teacher 

appears to be testing whether students can correctly apply a given rule: “ b is 1 plus 

[or minus] the percent.” His prescription, “I want to see 1 minus 11 percent on the 

calculator” provides only social necessity for a particular way of applying the method. 

The students who “did 100 minus 11 to get 0.89” seem to be modifying their answer 

to match the teacher’s expectation without mentioning that they (presumably) 

process this answer as a percent, dividing by 100. The discussion focuses on results 

and what was put into the calculator, not on the meaning of “growth factor” in this 

context or why one would wish to apply this rule to determine the base of an 

exponential. 

On the whiteboard, and presumably on the teacher’s website, the equations 

“     ” and “     ” literally appear, despite being mathematically 

ungrammatical. This rule allows students to know what they must do before seeing a 

problem: figure out if the problem involves growth or decay, find “the percent” and 
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either add it to one or subtract it from one. In general, it is not obvious what “the 

percent” refers to. The teacher’s statement establishes a didactical contract that 

there will only be one quantity given as a percentage so that this quantity can be 

assumed to be, without considering its meaning in context, “the percent” (to be 

expressed as a decimal). Since students have no need to consider problems 

carefully, their activity will be problem-free. We also note that this seemingly 

straightforward rule does not allow students to answer the teacher’s first questions 

easily. 

To implement the necessity principle, several problems involving exponential 

growth and decay should be given before showing the general formula for them. 

Once students have some experience with particular situations, the teacher could 

introduce the general form          as the type of function underlying such 

problems (need for connection and structure). He could then ask where the values A 

and b come from in the problem situation. Students should be able to see that A is 

just the starting amount, whereas b comes from the rate of growth: more specifically, 

if a quantity is growing by r% per unit of time, then     
    . Once they have 

made this realization, they can infer the rate of growth or decay from the form of an 

exponential function. A need for communication when comparing answers can lead 

students to agree on a particular form for the rate of growth (whether expressed as a 

decimal or percent). 

 

HYPOTHESIZED CAUSES FOR THE OBSERVED PROBLEM-FREE ACTIVITY 

 

Many of the teachers’ actions in the above episodes, though seemingly 

intended to help the students, are likely to lead to problem-free activity in the 

classroom. Lack of content knowledge was sometimes a contributing factor to these 

actions: the teachers did not know why something had to be the way it is, or what 

alternative methods might work in the same situation. However, based on 

conversations with the teachers, we believe that the dominant cause for the actions 

we observed is the way these teachers view mathematics. They see what will be 

tested as “the mathematics” that they are supposed to teach. Because of this, they 
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do not consider other options for solving problems. If the goal is for students to be 

able to use arithmetic sequences to solve certain problems on a test, then it does not 

matter whether there are easier ways to solve such problems or other ways of 

thinking about them. In their view, teachers are not supposed to stimulate students to 

think deeply about problems; rather, they are supposed to prepare students for 

testing and future courses by covering specific material. This view does not arise in a 

vacuum, but rather is shaped by external pressures. In recent years, the frequency 

and importance of mathematics testing have increased significantly. Teachers are 

expected to make sure most of their students perform adequately on these tests so 

that the school continues to receive funding. We hypothesize that, because the tests 

tend to cover a lot of material at a shallow level using specific types of problems, the 

curriculum teachers teach follows a similar pattern. This performance-driven attitude 

(where performance is measured by speed and accuracy rather than deep 

understanding) leads teachers to look for ways to speed up student learning, such as 

giving the students a fixed procedure before assigning problems. However, if one 

accepts the DNR premise that learning arises from solving problems that require 

students to go beyond their current knowledge, then such attempts become 

counterproductive.  

Teachers may also believe that new methods should be introduced using the 

simplest possible problems, to minimize technical complications and extraneous 

features. However, simple problems are often solvable by simpler methods, in which 

case they will not create intellectual need for the method being taught. On the 

contrary, students may view the use of the new method as an arbitrary requirement 

imposed by the teacher. 

We believe that these actions and attitudes are not restricted to the two 

teachers we observed; our impression is that mathematics classrooms across the 

country and at all age levels share many of these characteristics. Because of this, 

similar manifestations of problem-free activity are likely to occur. By attending to the 

intellectual need of their students and encouraging problem-laden, rather than 

problem-free, activity, teachers can help their students learn more. We have made 

particular suggestions for infusing the situations we observed with intellectual need. 
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IMPLICATIONS FOR TEACHING AND TEACHER TRAINING 

 

We believe that problem-free activity occurs frequently in most mathematics 

classrooms. It deserves further scrutiny: teachers should learn to both identify and 

prevent such activity. Our observations and example scenarios suggest several 

guidelines for teaching with intellectual need. 

 

1. Formulate long-term goals for instruction. 

Teachers should have clear objectives for their overall class and each activity 

they give to students. Otherwise, it is highly unlikely that students will perceive any 

intellectual purpose behind their mathematical activity. Based on the curriculum they 

are given, teachers should formulate overarching questions that drive the material 

and select material that instantiates these questions and helps to achieve the goals 

of the course. They should also present tasks in an organized fashion so that the 

goals of each activity are clear to students.  

 

2. Choose tasks carefully. 

Our observations highlight the importance of the tasks assigned to students. In 

addition to furthering long-term goals, tasks should be clear, problematic, and 

reasonable—though they need not be real. Tasks should be understandable using 

students’ existing knowledge, but they should require significant thinking to solve. At 

times it may be desirable to present more difficult tasks first, and then suggest that 

students consider how to formulate and solve a simpler version of the problem. 

 

3. Emphasize the meaning of problems and their solutions. 

Problems should set up meaningful situations rather than merely serving as 

triggers for some action. Teachers should check on how students understand 

problems, particularly when students encounter difficulty. They should not assume 

that students interpret problems in the same way they do. When problems are 

ambiguous, the teacher can prompt a discussion among students regarding which 
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interpretation seems most reasonable. Moreover, teachers should emphasize that 

many mathematics problems have a physical (real-world) embodiment as well as 

geometric and algebraic representations. Key features of any of these three 

realizations can be expected to correspond to important features in the others, and 

these correspondences can be sought and exploited in problem-solving.  

 

4. Allow students to explore their own methods of solving problems.  

In general, problems or questions should be presented before procedures are 

introduced; in this way, the need for a procedure is supplied by a problem. Students 

should be encouraged to attack problems in their own ways, unfettered by procedural 

restrictions. The teacher can wait to introduce a standard algorithm until students 

have presented their own methods or encountered significant difficulties. In addition, 

problems that motivate standard algorithms should not be solvable by easier 

procedures—they should either require the algorithm being motivated or be awkward 

to solve by other means. When alternate solution methods arise, students should be 

encouraged to compare them based on intellectual criteria.  

These guidelines have several implications for teacher training programs. As 

noted earlier, content knowledge alone is insufficient for good teaching. Teachers 

should not only learn how to correctly interpret and solve problems, but also they 

should explore common student interpretations and solution attempts for different 

types of problems. They should be taught to explain the meaning of a problem in 

relation to a student’s understanding of it. This can be quite difficult, particularly when 

students are not articulate in describing their interpretation. Teachers should be 

provided with coherent curricula that provide explicit links between the goals of 

instruction (both local and overarching) and the tasks that are presented to students. 

Teachers should understand these goals and how different tasks can achieve them. 

Teachers should also be trained to create and select tasks that will maximize 

learning opportunities for students by stimulating intellectual need. Finally, teachers 

should learn to value and pay attention to student thinking. Teachers and textbooks 

need not always be the sources of solution procedures; student ideas can drive much 

of the learning that occurs. To achieve these results, it is necessary to provide 

teachers with explicit examples of carefully-selected problem tasks that fit into a 
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coherent unit. However, prevailing attitudes may need to change as well. Primary 

and secondary school teachers rarely encourage significant investment in 

understanding a particular mathematics problem. Instead, there is typically a strong 

expectation that students will quickly produce answers (though not always correct 

ones) to the problems they are given, leading to problem-free activity. In order to 

teach with intellectual need, teachers must set up a classroom environment in which 

making sense of a problem is more important than producing an answer. When 

students understand a problem thoroughly, the answers they offer are more likely to 

contain mathematical insight, even when those answers are not complete and 

correct. In addition, many student errors can be traced to the way students interpret 

problems, rather than simply their level of knowledge.  
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