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particular. Studies focusing on one or several of those ideas 
can be found in the literature (Brizuela & Earnest, 2008; 
Cañadas et al., 2016). From the mathematical content view-
point, such studies are consistently based on linear functions 
involving discrete variables and natural numbers.

In experimentation with patterns, the connection between 
algebra and generalization has been emphasized to promote 
the development of algebraic thinking, but few studies 
have focused on non-linear patterns (Amit & Neira, 2008). 
Research focusing on quadratic relationships is in demand 
due to quadratic relationships’ essential role in the study of 
nonlinear functions (Wilkie, 2022). Given students’ rec-
ognized difficulties with this type of function (McCallum, 
2018) and the possible higher cognitive demand involved 
in moving from discrete to continuous variables (Stephens 
et al., 2017), in this study we explore the productions of a 
group of high-performing students. Our intention in working 
with this collective is to avoid possible difficulties arising 
from a poor understanding of the mathematical concepts.

Most authors deem generalization to be pivotal to alge-
braic thinking (Mason et al., 1985, 2009) contend that, 
before generalizing, students must identify structure. Kieran 
(1989) looks upon structure as the system made up of a set of 
numbers/variables, operations and properties of operations 

1  Introduction

A considerable body of research on algebraic thinking in 
elementary school has been generated over the last three 
decades. The earliest studies proposed a curricular approach 
known as early algebra. That proposal sought to promote 
algebraic thinking, prompt generalization among elemen-
tary students and enhance their capacity to express general 
mathematical relationships (Kaput, 1999).

One of the components of the early algebra approach 
entails working with functions, i.e., functional thinking. 
Functional thinking is understood here to be a “compo-
nent of algebraic reasoning based on the construction, 
description and representation of and reasoning with and 
about functions and their constituent elements” (Cañadas 
& Molina, 2016, p. 3). Analyzing relationships between 
covarying quantities, generalizing, problem solving, model-
ling, justifying and predicting are practices associated with 
algebraic thinking (Kieran, 2004) and functional thinking in 
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that organize all the elements of an entity in their relation-
ships to each other. The first aim of this exploratory study 
is to investigate the structures with which students iden-
tify the functional quadratic relationship: the expression’s 
component terms, signs, the order of the different elements 
and the relationships among them. With discrete variables, 
generalization plays a significant role in how students prog-
ress from particular cases to more-distant cases (Hitt & 
González-Marín, 2016). In contrast, the use of continuous 
variables allows us to focus the generalization process on 
a given interval, for which the student identifies the valid-
ity ‘for any value’. The possibility of using particular cases 
with numbers different from the natural number set presents 
a context that favors generalization beyond extending regu-
larity to more-distant cases, as occurs in the discrete case 
(McEldoon & Rittle-Johnson, 2010). For example, if a seg-
ment of length 6 is reduced by a quantity S, the student can 
obtain the functional relationship of the remaining length 
as 6-S by recognizing the validity of the general expression 
when taking S to be ‘any’ value in the interval [0,6], hav-
ing previously checked particular cases with decimal num-
bers. By contrast, if the variable is discrete, such as adding 
6 candies to the number of candies a child already has (C), 
the student can identify the functional relationship C + 6 by 
checking that the expression is correct for particular close 
cases (e.g., for C = 2, he would have 8 candies) and extend-
ing it to far cases. In this case, the validity of the expression 
for ‘any value’ implies extending it to any natural number, 
for very large numbers and even infinite quantities.

The educational usefulness of representations lies in 
the fact that people working with representations assign 
meanings to them and understand the mathematical struc-
tures involved (Radford, 1998). Accordingly, the second 
aim of the research describe in this paper is to analyze the 
representations used by students to express generalization. 
Rico (2009) identifies representations as “any tool (sign or 
graphic) that stands in for mathematical ideas and proce-
dures, enabling individual subjects to broach and interact 
with mathematical knowledge, recording and conveying 
their understanding of mathematics” (p. 3). According to 
several authors, the representations most frequently used 
include natural language, algebraic symbolism, drawings 
or diagrams, or some combination of the three (Cañadas & 
Fuentes, 2015; Carraher & Schliemann, 2007; Torres et al., 
2022).

In this study we inquired into the structures and repre-
sentations used by the participants when solving a task in 
which they were asked to generalize the rules for quadratic 
functions involving continuous variables. The findings were 
expected to reveal participants’ potential and difficulties, 
contributing to filling a knowledge gap, in light of the pau-
city of precedents for high performers of these ages, while 

providing information of interest for the design of such 
tasks for ordinary classroom use.

2  Functional thinking, functions, and 
variables

A number of authors discussed the possible approaches to, 
or conceptions, components or perspectives of, a structure 
or system for working on algebra in the classroom (e.g., 
Blanton & Kaput 2011; Drijvers et al., 2011; Kieran, 2004; 
Mason et al., 1985). Although none of the authors aspired to 
establish an exhaustive classification, they do identify cat-
egories on the grounds of common classroom algebra con-
tent or procedures. Usiskin (1999) identified the following 
four approaches: (a) generalized arithmetic, (b) problem-
solving procedures, (c) relationships between quantities and 
functions and (d) structures. One of the approaches recog-
nized by several authors, functions, is the one adopted here, 
namely, the functional approach.

For example, in the USA, various efforts have been 
made to develop function-based approaches to school alge-
bra as an alternative to the more traditional equation-based 
approach (Kieran, 2007). Functions are a mathematical con-
cept introduced in secondary education in most countries. 
Many questions about how to broach functional thinking 
with elementary students remain unanswered (Schliemann 
et al., 2012). Where attempted, the idea is not to introduce 
functions in earlier grades using the same methods as in sec-
ondary education. Rather, the intention is to build on the 
potential of the constructs to develop aptitudes that will help 
children reason at their present age and at subsequent levels 
of education.

Functional thinking is an approach recommended for 
early years, where algebra can be introduced using specific 
real-life situations involving quantitative relationships (Dri-
jvers et al., 2011; Molina & Cañadas, 2018) noted that “the 
manner in which functional relationships are worked with 
in early algebra is based on furthering the perception and 
generalization of patterns detected in situations involving 
two covarying variables” (p. 5).

Functional thinking focuses on the relationship between 
two (or more) co-varying quantities. It concerns the pro-
cess that leads from the relationship of specific cases to 
generalizations of that relationship (Smith, 2008, p. 143). 
Functional thinking is related to understanding the notion 
of change and how varying one quantity affects the other.

Function, as a mathematical construct, has been vari-
ously defined in the literature from different perspectives. 
According to Usiskin et al., (2003, p. 68), a function is a law 
that assigns just one element in set B to any given element in 
set A (where B may or may not be equal to A). Freudenthal 
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(1983) stresses the phenomenological importance of func-
tions as relationships between one element that varies freely 
and another that varies within certain bounds (p. 496).

Each representation provides a different characteriza-
tion of mathematical objects. Algebraic symbolism is 
commonly used to express generalization from secondary 
school onwards. Symbolic representation is very useful 
for synthetically and accurately representing the relation-
ships between indeterminate quantities. Where algebraic 
symbolism is used, letters represent variables in which the 
quantities change, while formulas describe inter-quantity 
relationships (Freudenthal, 1983). In this research, the vari-
ables presented to the students were attributes of length 
and area that could be measured as quantities (Stephens 
et al., 2017). The geometrical context enables students to 
construct relationships between quantities. This quantita-
tive reasoning affords a continuous dynamic perspective of 
covariation, which involves the coordination of continuous 
change in one quantity with continuous change in another 
(Johnson, 2012).

Variables may take on values in different number sets. In 
fact, the most usual definitions involve real numbers. How-
ever, in elementary grades (kindergarten and elementary 
school), the functions involved in generalization tasks con-
cern natural numbers, in the domain and in the codomain. 
We considered that this would be a limited approach from 
the mathematical viewpoint, for functions as mathemati-
cal content as well as for other topics and areas, including 
everyday situations, where most variables involved are con-
tinuous. This paper’s focus is on functions with continuous 
variables. A continuous variable is one whose possible val-
ues all lie within a given range. This nuance is significant 
for differentiation from the case of discrete variables, where 
functional relationships generate one-to-one correspon-
dences between elements in the set of the codomain (B) and 
elements in the set of the domain (A) (Vinner & Dreyfus, 
1989), where A and B are sets of natural numbers.

Additionally, the functions considered for work-
ing with algebraic thinking at elementary ages are linear 
(f(x) = ax + b), and their constants (a and b) also take values 
in natural number sets. In this paper, we deal with quadratic 
functions.

(f(x) = ax2 + bx + c) where a, b and c are natural numbers. 
One context with which primary school students are famil-
iar is geometry. For example, the measurements of lengths, 
areas and volumes are expressed with continuous variables 
with which functional relationships can be established.

However, the structures required in quadratic functions, 
such as 36-S2 to calculate the area of a square from which 
we have cut off a corner, may require more complexity in the 
symbolic representation or hierarchy of operations than lin-
ear functions. Working with patterns or linear functions can 

make the student more familiar with the arithmetic opera-
tions involved (e.g., ax + b), since this content carries much 
weight in the curriculum. For example, situations associated 
with arithmetic problem types (e.g., adding 2 to the inde-
pendent variable), are more common than those requiring 
the power of the independent variable.

3  Structures

The term ‘structure’ is polysemic in mathematics. Structure 
is one of the main ideas in mathematics (Kieran, 2018). A 
mathematical structure refers to sets and the relationships 
among their respective elements. In abstract algebra, struc-
ture may mean groups, rings or fields, among other pos-
sibilities. In early algebra, a mathematical structure is an 
arrangement interrelating and organizing a number of math-
ematical elements (Mulligan et al., 2010). To the extent 
that structure draws connections and relationships between 
mathematical concepts and processes, it serves as a means 
to analyze how students interpret and generalize regularities 
(Warren et al., 2013; Blanton & Kaput, 2004) presented a 
definition of algebraic thinking as the “habit of mind that 
permeates all of mathematics and that involves students’ 
capacity to build, justify, and express conjectures about 
mathematical structure and relationships” (p. 142). Mason 
et al., (2009) contended that, before generalizing, students 
must identify structure. In algebraic thinking, structure is 
viewed from the standpoint of its close relationship with 
generalization (Molina & Cañadas, 2018). The ability to see 
structure is crucial to performing algebraic transformational 
activity successfully and making sense of algebraic trans-
formations (Kieran, 2018).

From previous contributions about functional thinking 
drawn from the literature review, we observe that regu-
larities include relationships between the dependent and 
independent variables found in a function. In this con-
text, structure is equivalent to the regularity or the pattern 
between the values of two related (dependent and inde-
pendent) variables (Torres et al., 2021). The structures rec-
ognized by elementary students when generalizing linear 
functions have been described in the literature. Torres et 
al., (2022) explored the functional thinking of three second-
graders (7- to 8-year-olds) in tasks involving linear func-
tions. For example, in questions about particular cases in a 
task involving the function f (x) = x + 3,, all the students 
added 3 to the value of the independent variable to get the 
value of the dependent variable. So, the structure ‘seen’ by 
them was x+3. The authors highlighted the scant variety in 
the structures distinguished by students for a given regular-
ity, on occasion because they identified the correct structure 
which they then used in their replies to all the items on the 
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and tabular, graphic, pictorial and manipulative representa-
tion, highlights certain features of mathematical content and 
their inter-relationships.

A number of authors (e.g., Brizuela & Earnest 2008; 
Confrey & Smith, 1991) have addressed the idea of com-
bining several types of representation, a strategy that (a) 
establishes the interconnections between representations, 
(b) enables students to externalize and visualize different 
but complementary perspectives of an idea, (c) creates an 
atmosphere favorable to abstraction and the understanding 
of mathematical ideas and (d) is a relatively unexplored area 
in elementary education.

A number of studies on functional thinking address the 
types of representation used by elementary students to 
solve generalization problems. Cañadas & Fuentes (2015) 
described the types of representation used by 32 first-graders 
(6- to 7-year-olds). The students used pictorial representa-
tion most frequently, except in a question involving gener-
alization, where verbal representation prevailed. They also 
applied numerical and multiple representation (combining 
pictorial and numerical-symbolic representation).

Other researchers have also used tasks involving linear 
functions in elementary education. They have highlighted 
students’ preference for expressing generalization ver-
bally (Merino et al., 2013; Torres et al., 2022), and there 
is evidence that fifth-graders (10- to 11-year-olds) have the 
potential to use algebraic notation and verbal representation 
to generalize (Pinto & Cañadas, 2018). When working with 
particular cases, these students also used pictorial repre-
sentation, primarily because it was included in the problem 
wording, but also because it proved to be helpful for calcu-
lating certain particular cases. With sixth- to eighth-graders 
(10- to 15-year-olds) familiar with tasks involving patterns, 
Akkan (2013) found that sixth-graders were inclined primar-
ily to use numerical representation. In contrast, more-highly 
performing seventh- and eighth-graders generalized using a 
variety of representations, including algebraic symbolism. 
Also, in research involving 33 sixth-graders solving a prob-
lem with area calculations, students were able to generalize 
verbally as well as symbolically, showing a clear preference 
for a functional approach (Ureña et al., 2022). Moving up 
a level, middle-school students can represent relationships 
with variable notation including linear relationships and 
quadratic relationships (e.g., Ellis 2011a; Francisco & Häh-
kiöniemi, 2012).

In this paper we describe an experiment in late primary 
education and aim to investigate geometric contexts of 
measurement involving continuous variables and quadratic 
functional relationships.

questionnaire. The authors also noted that students found it 
difficult to establish structures involving a combination of 
operations.

Studies (e.g., Pinto & Cañadas 2018; 2019) with elemen-
tary students of different grades revealed students’ ability to 
recognize linear relationships and to generalize more than 
one equivalent structure (thanks to which, according to the 
authors, the students’ thought processes when generaliz-
ing could be determined). In linear functions with discrete 
variables, the particular cases used in the students’ replies 
enabled them to recognize the structures involved. Litera-
ture on the recognition of quadratic structures in continu-
ous functions in elementary grades is scarce; most studies 
focused on patterns. For example, Amit and Neira (2008) 
determined that mathematically talented sixth- and seventh-
year (11- to 13-year-old) students were able to generalize 
quadratic patterns. El Mouhayar & Jurdak (2015) focused 
on studying how the use of strategies to generalize quadratic 
figural patterns from immediate-near cases to far-n cases 
varied in students’ work across grades 4–11 (ages 9–17).

However, a number of studies (e.g., Ellis 2011a>, Ellis 
2011b) have shown that middle school students can gen-
eralize quadratic relationships when dealing with the rel-
evant quantities of height, width and area, and then extend 
this reasoning to develop a correspondence rule. In tasks in 
geometric contexts in middle grades with quadratic pattern 
figures, too, the role of visual structures for identifying the 
functional relationship has been highlighted (Ellis, 2011a; 
Rivera, 2010; Wilkie, 2022).

Most of the literature on functional thinking concerns 
work done by mainstream students. However, we find an 
exception in the study of Wilkie (2021). This author worked 
with high-achieving secondary students (grades 7–12) who 
were able to generalize quadratic figural patterns by arrang-
ing them with geometric figures. These results provided evi-
dence for the potential of visualization to support algebraic 
and functional reasoning with quadratic functions (Wilkie, 
2022).

4  Representation

Effective mathematical thinking entails understanding the 
relationships among different ways to represent the same 
idea, and the structural similarities and differences among 
them (Goldin & Shteingold, 2001). Our focus in this paper 
is on what Castro & Castro (1997) call external representa-
tion. The co-existence of various types of representation in 
school algebra helps students visualize abstract mathemati-
cal objects. Yerushalmy & Schwartz (1993) acknowledged 
different types of representations. Each type, including ver-
bal language, algebraic symbolism, numerical symbolism, 

1 3



Structures and representations used by 6th graders when working with quadratic functions

curricular enrichment program, which added new content or 
ideas not included in the formal curriculum or that worked 
with curricular content in greater depth. These programs 
supplement ordinary curricular content with tasks designed 
to develop characteristics associated with mathematical tal-
ent, such as originality in problem solving and understand-
ing of abstract ideas deemed complex for students’ age 
(Piñeiro et al., 2017).

The six students had been nominated by their teachers 
for high-performer status. They were therefore initially 
assumed to have an interest in improving performance and 
to possess a sufficient understanding of basic mathematical 
ideas. Their assessments identified a range of talents. S1 
exhibited complex academic talent; S2, artistic and verbal 
talent; S3, mathematical talent; S4, academic and math-
ematical talent; S5, verbal talent. While S6’s teachers had 
perceived above-average talent, the student had yet to be 
assessed by the department. A code consisting of ‘S’ fol-
lowed by a number was assigned to each student randomly 
to ensure anonymity.

The students had not received previous instruction on 
functional relationships or variables. Their teachers con-
firmed that they knew about the use of letters to represent 
the area of a square, but they had not previously worked with 
generalization tasks or those entailing algebraic thinking.

6.2  Data collection

The tool used to collect information was a questionnaire 
administered over two consecutive sessions. Participants 
were given three generalization tasks involving qua-
dratic functions around which a series of questions was 
asked. Based on our background research and in light of 
the objectives of this study, we designed a geometric word 
problem based on three non-linear functions: A(S) = 36-S2, 
A(S) = 36-4S2 and A(X,Y) = 36-X2-Y2.

The information-gathering techniques applied included 
participant observation, semi-structured interviews, and 
the students’ written answers. Two teacher-researchers 
participated in both sessions. One was an enrichment pro-
gram teacher, and the other videotaped the interviews and 
recorded the observations. The students’ usual classroom 
teacher was also present but did not intervene.

We designed the tasks according to the recommendations 
for introducing students to functional situations through 
quantitative reasoning (Ellis, 2011b). We introduced func-
tional relationships through quantitative situations that 
represented precise data, included quantitative situations 
with quantities covarying continuously rather than only 
discretely, and that supported sustained student attention 
in a given context or situation. The tasks chosen for the 
questionnaire called for generalizing quadratic functions 

5  Research objectives

In light of the scarcity of literature on functional think-
ing in upper primary school students, with regard to con-
tinuous variables and quadratic functions, we designed this 
study with high-achieving students. The study particularly 
focused on describing the functional thinking exhibited by 
sixth-grade students participating in a curricular enrichment 
program. That general objective was specified in terms of 
two specific objectives, as follows:

SO1: to describe the structures established by high-
achieving elementary students when working with a 
quadratic functional relationship in a geometric prob-
lem involving continuous variables;
SO2: to identify and describe the representations 
used to express the generalization of the functional 
relationship.

6  Methodology

The qualitative research did not “intend to intrinsically gen-
eralize the findings to larger universes, nor necessarily to 
obtain representative samples, but is based on induction” 
(Hernández et al., 2010, p. 16). Rather, we sought to dis-
cover and describe developments on the grounds of the 
information collected. This is consequently a descriptive 
study that also involves exploratory research, given that the 
functional thinking 6th-graders use when solving quadratic 
functions has been scantily analyzed in the literature.

We designed and implemented a teaching experiment 
(Confrey & Lachance, 2000). In the first session, with the 
whole group, we introduced a task involving a quadratic 
function with various questions, and the students filled in 
a questionnaire about the task. Finally, there was a sharing 
session in which the teacher-researchers interacted with 
the students, encouraging them to justify their answers and 
compare them with their classmates’. After this, the students 
were reminded of some of the concepts concerning calcula-
tion of the area of a square and powers as products of equal 
factors. We carried out an analysis, and a week later we 
conducted a second session of individual semi-structured 
interviews in which more-complex tasks were presented. 
We describe the tasks and the questions below.

6.1  Subjects

We worked with an intentional sample consisting of six 
sixth-graders (11- to 12-year-olds) attending a charter 
school in Granada, Spain. The students were enrolled in a 

1 3



R. Ramírez et al.

the small square with sides = 2 from the square with 
sides = 6. Find the area of the new figure. (See Fig. 1.)

5.	 Now find the area of a little square with sides that mea-
sure 4.

6.	 Draw a little square with sides = 4 inside the upper right 
corner of the square shown below. Suppose we remove 
the small square with sides = 4 from the square with 
sides = 6. Find the area of the new figure.

In items 7 through 13, we worked with a square with sides = 6 
from whose upper right corner a square of unknown side 
length was removed (Fig. 1). We asked the students to draw 
the figure as it would look after removing the smaller square 
in the corner and find the remaining area.

7.	 Draw a small square in the upper right corner. How 
would you explain to a friend how to find the area of a 
square when you don’t know the size of its sides?

8.	 Now suppose that the little square has sides = S. Could 
you find the area now?

9.	 Suppose we remove the small square with sides = S 
from the square with sides = 6. Find the area of the new 
Fig. 

10.	 Do you think the answer could be in decimals? What 
about negative numbers?

11.	 Now imagine the smallest possible square inside the 
larger square. How much would its sides measure? 
What about the largest one possible? How much would 
its sides measure?

12.	 How much would the smallest possible new figure mea-
sure? How much would the largest possible new figure 
measure?

13.	 How small and how large do you think S could be?

6.4  Session 2

The second session consisted of an individual interview 
with each student conducted by two team researchers, one 
acting as interviewer and the other taping the interview 
and recording the observations. The researchers conducted 

involving continuous variables. The task required students 
to find the relationship between the length of the side of a 
square and the area of the resulting figure; this task involved 
establishing a continuous quadratic function, since the pos-
sible values were confined within an interval.

Many functional relationships deriving from geometric 
problems, such as the application of length in measure-
ment problems, entail continuous variables. The elemen-
tary school curriculum in fact specifically includes models 
for problems associated with area calculation that require 
the application of quadratic functional relationships. As 
discussed below, the task entailed calculating the area of 
a square based on the length of one of its sides. The two 
sessions during which the information was collected are 
described below.

6.3  Session 1

We introduced students to the geometric context of the task 
in the first session during one hour. A smaller square in the 
upper right corner was removed from a square with sides 
measuring 6. We asked the students to determine the rela-
tionship between the area of the resulting figure and the side 
of the corner removed, which was A(S) = 36-S2, where A(S) 
was the area of the resulting figure and S the side of the cor-
ner removed. Both area and (side) length were continuous 
variables within a range of values delimited by the condi-
tions described in the problem, without mentioning any unit 
of measurement.

The students worked individually on a questionnaire, fol-
lowed by a discussion addressing the difficulties they had 
encountered and showing how to calculate the area of a 
square and how to use powers to represent it.

The first session entailed answering a total of 13 items 
(task 1). The wording of the session 1 items is set out below, 
along with a brief explanation of the ideas addressed in each.

In items 1 and 2, we introduced a square having a side of 
length 6 and asked students to calculate the square’s area.

1.	 Draw a square with sides = 6
2.	 Find the area of the square

In items 3, 4, 5 and 6, the task involved removing two 
squares, first a square having a side measuring 2, and then 
a square having a side measuring 4, from the upper right 
corner of the square whose side measures 6. We asked the 
students to draw the figure after removing the corner square, 
and to determine the area of the resulting figure.

3.	 Find the area of a little square with sides that measure 2.
4.	 Draw a little square with sides = 2 inside the upper right 

corner of the square shown below. Suppose we remove 

Fig. 1  Figures described in session 1
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In items 19 to 25 (task 3), we worked with a square with 
sides = 6, from which two smaller squares were removed 
from opposite corners. Their size was unknown, although 
the two were not necessarily the same size. We asked the 
students to draw the squares and find the area of the figure 
resulting from removing the corner squares (Fig. 2, right). 
Here the relationship was A(X,Y) = 36-X2-Y2 where A(X,Y) 
was the area of the resulting figure, X was the length of the 
side of one of the removed corners and Y was the length of 
the side of the other removed corner.

Students were asked to establish the relationship between 
the sides of the corner squares and the figure resulting from 
removing the two opposite corners. We analyzed the type of 
representation used and whether or not students used more 
than one type. We also recorded whether they used different 
variables to symbolize each corner.

In these items, we asked the students whether S (side) 
could be a decimal or a negative number. We also asked 
about its extreme values and the extreme values of the 
resulting area (A_min = 0, A_max = 36) and determined 
whether the students established a range of values for both 
or focused on specific values only.

19.	 Now draw two small squares inside opposite corners of 
a square with sides = 6.

20.	 If we know the two small squares are different, how 
could we symbolize the value of their sides?

21.	 What would the area of the new figure be if we remove 
the two little squares?

22.	 Do you think the answer could be in decimals? What 
about negative numbers?

23.	 Now imagine the smallest possible small square. How 
much would its sides measure? And the other square?

24.	 And now the largest possible small square. How much 
would its sides measure? And the other square?

25.	 How small and how large could the sides of one of the 
squares be? And the other one?

The information was analyzed from students’ written 
answers to the above items and the transcription of the ses-
sion videos.

6.5  Analysis categories

The units analyzed were the students’ answers for each item. 
We established two categories a priori to reply to the two 
research objectives.

	● Structure. Here we determined whether or not students 
recognized the structure involved. They were deemed 
to recognize the structure when they mentioned it for 
the general case or used it to calculate more than one 

the individual interviews one week after the first session, 
and there was no instruction on this topic between the two 
sessions. The interviews lasted one-half hour each, which 
proved ample for the work requested of the students. The 
interviewer verbally asked the same items as appeared in 
the questionnaire (items 14 to 25), checking that the stu-
dents understood the information and encouraging them to 
explain and justify their answers. The items addressed dur-
ing the interview are listed below, along with a brief expla-
nation of what was sought in each.

In items 14 to 18 (task 2), we worked with a square with 
sides = 6, and we removed a square of the same unknown 
area from each corner. We asked the students to draw the 
squares and find the area of the figure resulting from remov-
ing the corner squares (Fig. 2, left). In these items (Fig. 2, 
left), the function implied was A(S) = 36-4S2, where A(S) 
was the area of the resulting figure and S was the side of the 
corners removed.

Students were supposed to establish the relationship 
between the length of the side of the corner squares and 
the figure resulting from removing the four corners. We 
also asked about extreme values of the length of the side 
(S_min = 0, S_max = 3) and the extreme values of the result-
ing area (A_min = 0, A_max = 36) and determined in both 
cases whether the students established a range of values or 
focused on specific values only.

14.	 Now draw a small square with sides = S inside all four 
corners of a square with sides = 6.

15.	 Imagine you remove all four small squares. Find the 
area of the new Fig. 

16.	 Do you think the answer could be in decimals? What 
about negative numbers?

17.	 Now imagine the smallest possible square inside the 
larger square. How much would its sides measure? 
What about the largest one possible? How much would 
its sides measure?

18.	 What values could S have in this case?

Fig. 2  Figures described in session 2
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representation (e.g., Blanton & Kaput 2011), we did not 
consider tabular representation because it was not found in 
our preliminary data analysis.

The data as analyzed and the findings for each variable 
are discussed below. The answers to items 1 through 6 are 
not analyzed, because they were used to introduce the task 
and determine whether the students knew how to calculate 
area and the procedure for removing a square from one of 
the corners in a specific case.

7.1  Structure

The structures recognized by the students are listed in 
Table  1. In session 1, we distinguished between students’ 
individual work and the discussion for items 7 through 13. 
In session 2 (interview), we distinguished between the two 
sets of items.

Three of the six students (S1, S3 and S4) assigned the 
independent variable specific values and established no 
structure when working individually in session 1. The other 
three established the structure incorrectly as 36 − S. None 
identified structures when working with particular cases, 
although they did for the general case. Despite being high 
achievers, the students showed by their answers that they 
were unfamiliar with the use of quadratic expressions. We 
did not find structures derived from multiplication or pow-
ers, such as S2 or SxS.

Five students (S2, S3, S4, S5, S6) participated in the 
pooling of ideas. The exception was S1, who attended but 
did not participate. As a rule, the five recognized the exis-
tence of a relationship between the two variables, for they 
claimed they would need to know the size of the side of the 
corner square to calculate the area of the larger square and 
therefore the area of the resulting figure. Students showed no 
difficulty in using general expressions in the functional rela-
tionships derived from considering some particular cases, 
although they did not express the relationships correctly, as 
can be observed in the following example of S2: “You can 
put the L, a number, 3.5” (…) “all not going beyond 0 and 
6” (…) “I have put it assuming that I don’t have a ruler. I 

particular case. Any structures recognized were defined 
and represented symbolically by the authors.

	● Representation. Here we described the type or types of 
representation used and classified them as verbal, picto-
rial, symbolic or multiple. Where multiple representa-
tion was used, the types combined were specified in the 
results.

Verbal language refers to natural oral and natural 
written language. The former includes a specialized 
sub-language with oral characteristics related to math-
ematical domains. Natural written language involves 
writing out sentences and phrases.
In algebraic symbolism, letters represent variables 
whose meanings are indeterminate changing quanti-
ties, while algebraic expressions describe the relation-
ships among those quantities. Symbolic representation 
is highly useful to represent synthetically and pre-
cisely relationships between indeterminate quantities.
Pictorial representation comprises drawings that 
express relationships. Its use reduces the cognitive 
weight of the task for students by helping them visu-
alize and think through the ideas implicit in certain 
information (National Council of Teachers of Math-
ematics, 2000).
Multiple representation is the result of combining two 
or more of the aforementioned types of representation 
(Van Someren et al., 1998).

7  Analysis of data, and results

Based on the a-priori categories, two of the researchers ana-
lyzed the data, classifying structures and representations. 
Expert triangulation was carried out with a third researcher. 
Non-matching cases served to determine definitive criteria 
and confirmed that the categories were complete for the 
analysis of all responses, with no unstated categories added. 
For example, although other research focuses on tabular 

Table 1  Summary of structures recognized
Session 1 (items 7–13) Session 2 (items 14–25)

Student Individual answer Pooled answer Items 14 to 18 Items 19 to 25
S1 None established - None established 36 − X = 32

36 − Y = 30
S2 36 − S 36 − S 36 − 4S2 36 − X2 − Y 2

S3 None established None established 36 − 4S2 36 − X2 − Y 2

S4 None established - 36 − S 36 − X2 − Y 2

S5 36 − S 36 − S 36 − 4S 36 − X − Y
S6 36 − S 36 − S 36 − 4S2 36 − X2 − Y 2

Note. - = the student failed to reply.
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discussion, we reminded them that the area of the square can 
be calculated as S2 or SxS.

Some students assimilated these concepts, as shown at 
the beginning of the second session. We found two different 
kinds of answers in session 2 (items 14 to 18). S2, S3 and 
S6 gave the correct answer, 36-4S2, treating the variables 
as continuous by recognizing the validity for all values of 
the interval. On the other hand, three of the students contin-
ued reporting the same errors as in the previous session. S1 
defined the structure while working with particular cases, 
whereas S4 and S5 identified the structure incorrectly as 
36-4 S and 36-S, respectively. S4 found 36-S, because she1 
was unable to correctly express S×S, despite noting that the 
area of the small square would be calculated that way; she 
also failed to include the number 4 in the algebraic formula. 
S5 included the multiplier (4) but expressed the structure 
incorrectly as 36-4 S, for he found it difficult to arrange the 
terms and failed to realize that the area in this case would 
be S×S.

All the students except S1 correctly used the same let-
ter to designate all four corners, proof that they realized 
they were equal. All six noted that the area of the small 
square would have to be multiplied times 4, although S2 
required help to do so when the interviewer asked, “Are 
all the results the same or are they different?” “The area of 
the small square has to be multiplied how many times?” It 
is evident that they were familiar with the line structures 
associated with repeated additions (4 S = S + S + S + S) and 
even the use of the hierarchy of operations when combining 
additive and multiplicative structures (seeing no need to use 
brackets in expressions such as 36-4S2). They also recog-
nized that the same letter represents equal quantities, in this 
case the length of the side of the little squares.

In items 19 to 25, four students (S2, S3, S4 and S6) 
recognized the structure correctly. The other two (S1 
and S5) established incorrect structures (respectively, 
36 − X − Y, 36 − X = 32, 36 − Y = 30). The students per-
sistently confused linear and quadratic variables. In other 
words, the students prioritized the difference in areas in the 
structure, but they interpreted both the length of the side 
and the area of the square with the same letter. They did not 
identify the quadratic relationship established between the 
length variable and the area variable. The fact that this dif-
ficulty persisted in some high-performing students, despite 
the instruction received in the first session, makes it an indi-
cator of the complexity of the proposed task for students of 
these ages without previous instruction in this content.

S2 correctly established the structure verbally in the fol-
lowing terms: “I would need to calculate the area of this 
square, calculate S times S and X times X. I then add the 

1   In this paper, pronoun gender is assigned arbitrarily and randomly 
to ensure student anonymity.

said to calculate the area you have to multiply the height and 
the base of the small square, then the area of the big square. 
Then, you have to subtract the result of the big square from 
the small square and that is the result of the area”.

One of the researchers guided the collective session for 
items 7 through 13 by posing questions concerning students’ 
remarks and replies: “Let’s talk about this for a minute. 
What do you think about your classmate’s reply? Do you 
agree?” “How could we go about finding the area of the 
square?” S6, S2 and S5 established the structure as 36-S, 
and S3 continued to use specific values but gave no sign of 
recognizing the structure. The researchers prompted the stu-
dents to generalize symbolically step by step, verifying that 
all ultimately understood the process and were able to gen-
eralize on their own. To do so, the researchers drew pictorial 
and symbolic representations on the classroom blackboard 
(Fig. 3) while discussing the answers with the students and 
guiding the collective exercise. Although all six students 
ultimately recognized the structure correctly, three (S2, S3 
and S6) discovered unaided that the smaller area was S×S 
(although they defined the area of the resulting structure 
incorrectly as 36-S).

One of the students (not identified because it was during 
the collective discussion) used the expression “double S” 
to represent the area of the small square. S2 performed the 
calculation correctly, but did not symbolize it algebraically, 
saying: “What I did, instead of representing it like that, S 
times S equals, I drew a circle and subtracted it.”

The results of the first session show that students identi-
fied the need to subtract the area of the square from the total 
area, but they were not familiar with either the area formula 
or quadratic expressions. For example, they confused SxS 
and 2 S or S. They did not consider whether the expression 
they proposed was fulfilled in the particular cases, which 
they did calculate correctly. Therefore, they did not perceive 
the symbolic expression as a generalization of what applied 
in the particular cases. That is to say, they did not perceive 
S as a variable that takes values between 0 and 6, even 
though they answered correctly for the case S = 2. After the 

Fig. 3  Pictorial and symbolic representations used by the researchers
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combinations used by these students were verbal-symbolic 
and verbal-pictorial.

In the symbolic representations, S2 used the power fac-
tor, although incorrectly, indicating S8, based on the fact that 
there were eight sides (eight S’s). S3 also raised the variable 
to a power, but also expressed the terms incorrectly, writing 
the structure as “6 times 6. And now S times S…, 36-S8.”

The results show the students’ potential to express gen-
eralization through multiple representations, mainly verbal 
and symbolic. Their versatility in showing different repre-
sentations is proof of the generalization process, despite the 
errors. For example, despite the difficulties and errors dis-
played in the quadratic expressions, the students overcame 
these difficulties in the verbal representations (for example, 
replacing “SxS” with “the area of the little square”).

All the students recognized that X can take all positive 
values in the interval [0,6], which for them corresponded to 
decimal numbers. The students demonstrated that the vari-
ables associated with measurements help give meaning to 
decimal expressions and help one speak of the indetermi-
nate in terms of any measurement, such as any value in an 
interval.

S1: It can take the values 3.7, 2, 4.4, 5…. No negatives, 
because it is a measurement.

S2: S can take decimal values. You can put in a number, 
3.5.

A difference was found in this kind of function with con-
tinuous variables. While in discrete variables (e.g., Torres 
et al., 2021), generalization is perceived when the student 
identifies regularity in particular cases and extends it to 
the rest of the cases involving large numbers (McEldoon 
& Ritte-Johnson, 2010), in continuous variables generaliza-
tion is demonstrated when a student recognizes regularity in 
particular cases and extends it to all the types of numbers he/
she identifies in a particular interval.

8  Discussion and conclusions

This study focused on two ideas associated with functional 
thinking, structure and representation, in working with high-
performing sixth-graders, exploring aspects that had not yet 
been thoroughly studied, such as continuous quadratic func-
tions in geometry contexts. Three main contributions can 
be drawn from the results, particularly in comparison with 
previous studies using discrete variable functions.

The participating students had difficulties expressing 
structures involving S2.

Although none of the students had received prior instruc-
tion on the use of letters, some identified a structure implicit 
in the first task, establishing S×S as the area of the corner 
removed. We believe that to be a significant achievement, 

values of X times X and S times S, and I subtract that sum 
from the area of the large square.” Both she and S3 defined 
it symbolically. S3 verbalized the structure correctly by say-
ing, “We multiply S times S, and then we multiply m times 
m; I think then we need to add the two up and subtract it 
from 36,” but used the wrong symbolic expression. All the 
students used different letters to represent the two corners. 
Four of them needed prompting, for they reasoned with 
arguments such as, “If they weren’t the same, well, I’d use 
S for one and a higher number or letter for the other, multi-
plying S times S,” or “I’d call them the same, because after 
all, since I do the same thing, you can use the same letter.”

7.2  Representation

The representations used by the students are summarized in 
Table 2 and described in greater detail below.

The three students who replied individually to the ses-
sion 1 items, S2, S5 and S6, used verbal representation to 
establish the structure. In the pooled exercise in session 1, 
all the participating students (S2, S3, S4, S5, S6) used ver-
bal representation, and S5 and S6 used multiple (verbal plus 
symbolic) representation. S2 combined three types of repre-
sentation (verbal, symbolic and pictorial).

In the interviews, students used primarily symbolic and 
verbal representation, separately or by combining the two 
types together or combining both types with other types. In 
session 2, three students (S4, S5 and S6) used symbolic rep-
resentation in both parts of the session, four (S1, S2, S3 and 
S6) used verbal representation in items 14 to 18, and three 
(S2, S3 and S5) in items 19 to 25 used also verbal represen-
tation. Student S2 used multiple representations in items 14 
to 25, while S2, S3 and S6 used multiple representations in 
the “four corners” part of the problem and S2 and S5 used 
multiple representations for the “two corners” task. The two 

Table 2  Summary of representations used
Session 1 (items 7–13) Session 2 (items 

14–25)
Student Individual answer Pooled 

answer
Items 14 to 18 Items 

19 to 
25

S1 None established - V S
S2 M (V and P) M (V, S 

and P)
M (V and P) M (V 

and S)
S3 None established V M (V and S) V
S4 None established V S S
S5 V M (V 

and S)
S M (V 

and S)
S6 V M (V and 

S)
M (V and S) S

Note. - = no answer; V = verbal; P = pictorial; S = symbolic; M = mul-
tiple.
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significant implications for the design of tasks suitable for 
such students and the identification of the difficulties their 
typically developing peers may encounter.

To express generalization, the participating students 
used varied representations, most frequently verbal and 
algebraic symbolism.

Moving on to the second research objective, we found 
that the students used primarily verbal and symbolic repre-
sentation. While they did not refuse to apply symbolic rep-
resentation, they did make mistakes. Even in the cases in 
which they failed to express adequately the correct quadratic 
expressions, they did not show difficulties in using general 
expressions from the particular cases they analyzed. Our 
results on representation agree with the findings reported by 
Pinto & Cañadas (2018) to the effect that students general-
ized but used different structures to do so. That induces us 
to believe that the difficulty lay not in the quadratic func-
tion per se, but in expressing the function with symbolic 
notation.

Of the types of representation initially defined (verbal, 
symbolic, tabular, pictorial and multiple), students used 
four, the exception being tabular. Pictorial representation 
was only scantily deployed, despite its presence in the task 
wording and introduction. Multiple representation was 
present as the combination of verbal and pictorial, verbal 
and symbolic and even verbal, symbolic and pictorial. This 
study, like others, shows that high-performing students of 
these ages have the potential to use different representations 
and to handle algebraic symbolism (Akkan, 2013; Ureña 
et al., 2022). These findings are consistent with results 
reported by Cañadas & Fuentes (2015), who observed that 
verbal and symbolic representation are the two types most 
frequently used, along with a combination of these two and 
even all three types.

The present findings are also consistent with Merino et 
al.’s (2013) observation that verbal is the type of representa-
tion most frequently used by students. However, this study 
has shown the usefulness of combining verbal representa-
tion with other types, such as symbolic representation, as a 
means of externalizing complementary perspectives of an 
idea (Brizuela & Earnest, 2008; Confrey & Smith, 1991), 
in this case, to overcome the stated difficulties in expressing 
the quadratic expressions. The choice of verbal represen-
tation by these subjects and those of Merino et al., (2013) 
might be conjectured to be attributable to the greater ease 
of explaining their answers verbally than in any of the other 
forms of representation.

We observed differences in the process of generalization 
with continuous and discrete variables.

The students showed difficulties perceiving S as a vari-
able, as they did not recognize that the proposed func-
tional relationship was not fulfilled in the particular cases 

inasmuch as it can thus be inferred that they both general-
ized and recognized structure. When subtracting that sum 
from 36 (the area of the original square), however, they 
failed to use the formula for area, identifying the struc-
ture for the area of the new figure as 36-S. Some students 
included the power factor in their notation, but incorrectly. 
That may be attributable to the fact that, while they knew 
that the area of a square is found by raising the length of its 
side (when given as a number) to the power of 2, they were 
unfamiliar with letter-based algebraic notation and possibly 
thought that the factor differed depending on whether the 
dimension was expressed in letters or numbers. The error 
may have also been due to an insufficient prior understand-
ing of the power factor, however.

In the second task, four students recognized that the same 
letter should be used for all four corners (which were equal) 
and used it correctly in the established structure. Their error, 
answering 4 S instead of 4S2 (as the value to be subtracted 
to find the area of the figure resulting from removal of 
the four corners), may have been induced by the fact that, 
although they realized they had to subtract four times some-
thing dependent upon S, they failed to distinguish whether S 
was the side of the smaller square or the area of the corner 
removed.

In the third task (items 19 to 25), four of the students 
recognized the structure as involving a quadratic expres-
sion, and four (of the five) also used different letters to 
designate each corner. That attested to their realization that 
different corners required different letters. Another interest-
ing finding was the way S4 expressed the terms: instead 
of 36 − X2 − Y 2 , she used other letters (m × m = n
, S × S = a ), and ultimately wrote the relationship as 
36 − n − a.

The participating students exhibited difficulties and 
errors in performing the tasks involving quadratic rela-
tionships, as found in previous studies (McCallum, 2018). 
However, the use of measurement contexts with continuous 
functions shows that even high-achieving students had dif-
ficulties that would not have become manifest either in pre-
vious pattern-based studies where students proved able to 
generalize quadratic patterns (Amit & Neira, 2008; El Mou-
hayar & Jurdak 2015) or in studies with geometric tasks for 
students in higher grades (Ellis, 2011a, b; Wilkie, 2022). 
The observed difficulties in identifying the structure of qua-
dratic relationships stemmed from a poor understanding of 
the concepts involved (area and length). Despite instruction 
in area calculation and power notation, errors persisted in 
some of the students. Although quantitatively rich situations 
offer a useful context, it is important to provide instructional 
settings that engage students to focus on or generalize rela-
tionships that are accurate, powerful, or even algebraically 
meaningful to them (Stephens et al., 2017). That finding has 
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generalized, nor do they have any intention of doing so, in 
the acknowledgement that the sample is not representative.
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