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Abstract 
Isomorphism is a difficult concept to understand for undergraduate students. 
However, Mathematics Education suggests that it is necessary to promote 
mathematical connections to foster its understanding. This paper presents 
some intra-mathematical connections on the classification of groups of prime 
order that emerged solving task, which were based on a historical and 
epistemological analysis of the concept of isomorphic groups. This research 
is a case study. An interview was used for data collection, and qualitative text 
analysis was performed. Fourteen connections associated with the concepts of 
group, subgroup, cyclic groups, isomorphism, isomorphic groups, and the 
Lagrange theorem were identified, involved in the classification of prime 
order groups. We concluded that the tasks designed with a historical 
foundation enhance a deep understanding from the connected appreciation of 
concepts, theorems, methods, and algorithms. 
 
Keywords: Mathematical connections, history, isomorphic groups, 
mathematics education.
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Resumen 
El isomorfismo es un concepto difícil de entender para los estudiantes 
universitarios. En Educación Matemática, se plantea que es necesario 
promover conexiones matemáticas para favorecer su comprensión. En este 
artículo se presentan algunas conexiones intramatemáticas en la clasificación 
de grupos de orden primo, que emergieron en la resolución de tareas, las 
cuales, se fundamentaron en un análisis histórico y epistemológico del 
concepto de grupos isomorfos. La investigación muestra un estudio de caso. 
Se usó una entrevista para recoger los datos, y para analizarlos se realizó un 
análisis cualitativo de texto. Se identificaron catorce conexiones asociadas a 
los conceptos de grupo, subgrupo, grupos cíclicos, isomorfismo, grupos 
isomorfos y el teorema de Lagrange, implicados en la clasificación de grupos 
de orden primo. Se concluye que las tareas diseñadas con una fundamentación 
histórica favorecen en una comprensión profunda a partir de la apreciación 
conectada de los conceptos, teoremas, métodos y algoritmos. 
 
Palabras clave: Conexiones matemáticas, historia, grupos isomorfos, 
educación matemática.
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esearch on post-calculus mathematics university-level courses has 
increased, indicating that progress should be made in theoretical 
understanding of post-calculus learning and teaching (Rasmussen & 
Wawro, 2017). Especially regarding the concept of isomorphism, in 

Abstract Algebra, undergraduate students have been reported to have 
difficulties in proving or disproving that two groups are isomorphic (Lajoie, 
2000; Leron et al., 1995; Weber & Alcock, 2004), in recognising the 
usefulness of this concept (Lajoie, 2000), and in conceptualising isomorphic 
groups as similar, based solely on properties such as the nature of the elements 
and operations, the group order and the elements or commutativity (Lajoie, 
2000; Leron et al., 1995). Besides, they do not perceive the operation 
preservation property from this idea of similarity or the formal definition of 
isomorphism (Lajoie, 2000; Leron et al., 1995; Melhuish, 2018; Weber & 
Alcock, 2004). 

Regarding the classification of finite groups in the first course of Abstract 
Algebra, students usually must determine how many different groups there 
are of a given finite order by exploring all possible ways to fill out an operation 
table and the renaming (Thrash & Walls, 1991). However, this procedure is 
little convenient for groups of orders greater than four, together with students’ 
difficulties in building operation tables, for example, the tendency to use a 
canonical procedure and the adoption of a local perspective to reduce the level 
of abstraction (Hazzan, 2001). In contrast, Cayley’s (1854) methods allow a 
connected appreciation of the underlying concepts, such as group, subgroup, 
cyclic group, isomorphism, and the Lagrange theorem, which we consider to 
favour learning since making connections between mathematical ideas is a 
fundamental part of learning mathematics with understanding (Singletary, 
2012). 

In this sense, a duality between understanding and connections is 
visualised because, while students must establish precise conceptual 
connections to solve tasks with unfamiliar structures and general classes of 
objects to verify understanding (Melhuish & Fagan, 2018), a solid conceptual 
understanding is characterised as a knowledge rich in connections (Hiebert & 
Lefevre, 1986). This highlights that the importance of the study of 
mathematical connections lies in its link with understanding (Rodríguez-Nieto 
et al. 2020; Businskas, 2008; Eli et al., 2011; Novo et al., 2019), in part, 
because connections allow mathematics to be seen as an integrated field. 
However, in the teaching-learning process, a finished and purely formal 

R 
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presentation of mathematical concepts and ideas is favoured, while 
epistemological aspects and theoretical construction processes are not 
prioritised (Arteaga Valdés, 2017), affecting students’ understanding of how 
concepts are interrelated. Therefore, this research aims to characterize intra-
mathematical connections that emerge during a college girl student’s 
resolution of tasks associated with the classification of groups of prime order, 
considering Cayley (1854) as a primary source for their design. 
 

Theoretical Foundation 
 

Mathematical Connections 
 
Mathematics is an integrated field of study, though it is often presented as a 
collection of separate strands or standards. Nevertheless, as a coherent whole, 
the students can see the mathematics when they do mathematical connections 
between ideas and their understanding is deeper and more lasting (National 
Council of Teachers of Mathematics [NCTM], 2000). In this sense, Armitage 
(s/f) mentions that connections require students to observe their solutions and 
reflect, as this procedure is linked to their previous or current learning, 
generating new learning. This discussion highlights the relevance of 
mathematical connections, which were defined by the NCTM (2000) as: “the 
ability to recognize and use connections among mathematical ideas; 
understand how mathematical ideas interconnect and build on one another to 
produce a coherent whole; recognize and apply mathematics in contexts 
outside of mathematics” (p. 64). More recently, García-García and Dolores-
Flores (2018) defined mathematical connections as a cognitive process by 
which a person relates or associates two or more ideas, definitions, concepts, 
procedures, theorems, representations, and meanings with each other, with 
other disciplines, or with real life. Likewise, several investigations 
(Businskas, 2008; Eli et al., 2013; Singletary, 2012) agree that mathematical 
connections link or bridge mathematical ideas. It is known that this type of 
connection is divided into extra-mathematics and intra-mathematics. This 
article will explore only intra-mathematical connections, i.e., those that 
emerge within the very mathematics and between mathematical entities 
(García-García & Dolores-Flores, 2018). 
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Table 1 presents the categorisation used to study mathematical 
connections, derived from the types of mathematical connections reported in 
the literature reviewed (Businskas, 2008; Eli et al., 2011; García-García & 
Dolores-Flores, 2018; Singletary, 2012). In categorical descriptions, the 
connection components A, B and C correspond to ideas, concepts, definitions, 
theorems, procedures, representations, or meanings. 
 

Table 1 
Categories for different types of mathematical connections 

 
Categories Description 

Different representations Representations can be alternative or equivalent. A is an 
alternative representation of B, if both are expressed in two 
different ways (e.g., geometric-algebraic, verbal-algebraic). On 
the other hand, A is a representation equivalent to B when both 
are expressed in two different ways, but within the same form 
of representation (e.g., geometric-geometric). 

Comparison through common 
features 

A and B share some common characteristics, allowing a 
comparison based on their similarities or differences (A is 
similar to B, A is the same as B, A is not the same as B, A or B 
defines or describes in a similar way to C). 

Part-whole relations When the logical relationships that are established include 
generalisations and inclusions. The former is of the form A is a 
generalisation of B, and B is a particular case of A. The latter is 
of the form A is included or contained in B. 

Implication When a relationship of dependence is established between one 
concept and the other, where one component of the connection 
follows logically from another one (If A, then B, If A, then B 
and not C). 

Procedure A mathematical or algorithmic procedure is associated with a 
particular concept (A is a procedure used to work with B). 

Characteristic/Property It is established when defining some features or describing the 
properties of concepts in terms of other concepts that make 
them different from or similar to the others. 

Derivation It manifests itself when knowledge of a concept is used to 
construct or explain another concept; although it is not limited 
to the recognition of some derivation. 

Connecting methods It refers to the consideration of multiple methods of solving a 
problem, i.e., A or B can be used to find C. 

Reversibility It is the ability to recognise and establish bi-directional 
relationships between mathematical ideas. For example, when 
starting from a concept A to arrive at a concept B and reversing 
the process starting from B to return to concept A. 

Meaning It refers to the sense that an individual gives to a mathematical 
object, so the attributed meanings may be limited by its 
definition or the context of its use. 
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History As a Tool  
 
In Mathematics Education, we identify several arguments for the use of 
history and how it can be used in the processes of its teaching and learning 
(Furinghetti, 2020; Jankvist, 2009). Based on Jankvist’s (2009) categorisation 
of why history may or should be used in mathematics teaching, this research 
considers the use of history as a tool, since it plays an important role in 
supporting the teaching and learning of mathematical concepts, theories, 
methods, and algorithms (in-issues). Specifically, the study of the sources in 
mathematics learning, not addressing the study of the history of mathematics 
directly but indirectly, i.e., without explicitly discussing historical 
development (Jankvist, 2009), served as a foundation for task design and its 
role in establishing mathematical connections was recognised. 
 

The classification of groups of prime order 
  

In On the theory of groups, as depending on the symbolic equation θn = 1, of 
1854, Cayley proposed the classification of finite groups according to their 
form and based on an approach of generators and relations for groups, 
exemplified the distinction between the ordinary equation xn − 1 = 0 and the 
symbolic equation θn = 1. He also considered a finite group 1, α, β, γ, … (n 
different symbols, where 1 is identity) as a system of roots of the symbolic 
equation θn = 1, explored the nature of n in that equation, and concluded that 
every finite group G of prime order (index) is cyclic (without using this term): 
“when n is a prime number, the group is of necessity of the form 1, α, α2,	…	
,αn-1, (αn = 1)” (p. 41). Likewise, he stated that if G is a cyclic group of prime 
order (in the current terminology), then every element of G, except for the 
identity, is a generator (prime roots); while for a cyclic group of composite 
order n, there will be as many generators as natural numbers k < n, where k 
and n are relatively primes. 

Cayley stated that any group of order n, where n is a prime or composite 
number, of the 1, α, α2,…,αn-1,	(αn = 1) (cyclic) form, “is in every respect 
analogous to the system of the roots of the ordinary binomial equation xn −
1 = 0” (pp. 41-42), i.e., isomorphic to the system of nth root of unity. Thus, 
any cyclic group of order n will behave in the same form as the latter. In 
particular, all groups of prime order have the same form as the cyclic group of 
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nth roots of unity, and for any given prime p, there is essentially only one group 
of order p. 
 

Methodology 
 
This research has a qualitative approach (Creswell, 2014) because it explores 
the mathematical connections’ cognitive attributes of an individual when 
solving tasks associated with the classification of groups of prime order. The 
research design was a case study whose characteristic is to analyse the context 
and processes that clarify the theoretical issues being studied (Njie & 
Asimiran, 2014). The data was collected through a questionnaire and an 
interview. 

To select the case study, we followed up a group of undergraduate students 
of the fifth semester (20 to 21 years-old) of Mathematics, who had started a 
first course of Modern Algebra (Abstract Algebra). With the course teacher’s 
consent, we watched the classes, took notes of the contents developed, the 
examples given by the teacher, the type of tasks and students’ participation. 

The case was chosen according to two criteria: i) the student should 
complete the Abstract Algebra course, and ii) wished to collaborate in the 
investigation voluntarily. This choice led us to select our study case, student 
Lu, who had not succeeded in the Abstract Algebra course but had participated 
enthusiastically, it is worth mentioning that she had completed two Calculus 
courses, one on Mathematical Analysis, and two on Linear Algebra. 
 
The Questionnaire 
 
We developed a questionnaire that incorporated a sequence of eight tasks of 
an intra-mathematical nature and was validated both by an expert in the area 
of Abstract Algebra with more than ten years of teaching experience in a 
Bachelor’s Degree in Mathematics and by users, considering the results of a 
pilot test applied to five students of the fifth semester of which Lu was a 
participant. 

The tasks of the questionnaire are described below (see Figure 1): 
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Figure 1. The interview questionnaire. 
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Task 1 aims to explore a student’s knowledge of the Lagrange theorem. 
Examples of finite groups employed included integers module n [(ℤ!,+n)] 
and permutations of a set X [symmetrical group of n letters, (Sn, ∘)]. For the 
presentation of the groups, the order from lowest to highest from two to seven 
is taken into account, and cyclic and non-cyclic groups are considered. 

Tasks 2 and 3 are intended to explore a student’s reasoning regarding the 
subgroups of a group of prime order. In Task 3, the term generated is used 
without explicit reference to a cyclic group; specifically, it is expected that the 
student can establish relationships between a group of prime order and the set 
generated by any of its non-identity elements. 

Tasks 4 to 6 consider finite cyclic groups, and the student is expected to 
associate that the term generated by an element x of the group [〈x〉] is a 
subgroup and that the order of an element of the group is equal to the order of 
the subgroup generated by this element. In relation to tasks 1 to 6, we should 
mention that they involve understanding preliminary concepts to face the 
specific tasks on the classification of groups of prime order. 

Tasks 7 and 8 aim to explore the relationships between ideas and 
mathematical results that a student establishes in determining that the only 
group of (prime) order p is the cyclic group of that order. The student was 
expected to relate the knowledge that emerges in the previous tasks (1 to 6), 
which, comprehensively, aims to explore the associations between ideas and 
mathematical results that the student can establish related to the concepts 
involved and required in the classification of groups of prime order.  
 
The Interview 
 
The interview was used as an information-gathering tool to deepen the 
reasoning of the case. According to Arnon et al. (2014), based on the student’s 
answers, the interviewer can choose a more didactic route, since the aim of an 
interview is to determine and explain how individuals build their 
understanding of mathematical concepts and allows the interviewer to observe 
the construction process as it develops. Also, if the student gets stuck in a 
specific task or does not provide a reasonable answer to a question, clues can 
encourage their progress in constructing concepts and motivating connections 
between different notions (Oktaç, 2019). 

In the case study, the interview questionnaire was applied in three 90-
minute sessions each. The interviews were recorded in audio and video for 
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further analysis. In addition, they were transcribed in their entirety to be 
analysed together with the written productions.  
 
Data Analysis 
 
For data analysis, we used the qualitative text analysis method (Kuckartz, 
2014), which consists of the following phases: reading and interpreting the 
text, building categories, coding segments of the text, analysis, and 
presentation of results. In the phases, the categorisation of mathematical 
connections is considered. 

Phase 1. Reading and interpretation the text. Familiarisation with the data 
was established from the reading and analysis of the transcripts, along with 
the written productions based on the research aim.  

Phase 2. Building categories. Based on the research aim, the construction 
of categories was carried out deductively, i.e., before collecting the data and 
based on the established framework on mathematical connections. In this 
sense, the following main categories (typology of mathematical connections) 
were considered: different representations, comparison through common 
features, part-whole relations, implication, procedure, 
characteristic/property, derivation, connecting methods, reversibility, and 
meaning.  

Phase 3. Coding segments of the text. The encoding of the data was carried 
out from the main categories, i.e., the categories established in the second 
phase were given codes. Specifically, a search for words or phrases in the 
transcripts associated with the typology of mathematical connections was 
performed, and the codes were accordingly assigned.  

Phase 4. Analysis. Based on the third phase results and triangulation 
between the three authors, the specific mathematical connections were 
characterised concerning the categories for which evidence was found, i.e., 
based on a discussion and consensus of their correspondence with the data. 

Phase 5. Presentation of results. For their presentation, the mathematical 
connections were grouped according to the mathematical concept associated 
with them: group, subgroup, Lagrange theorem, cyclic groups, isomorphism, 
and isomorphic groups. These connections fit into one or more of the 
categories proposed by Businskas (2008), Eli et al. (2011), García-García and 
Dolores-Flores (2018), and Singletary (2012). 
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Results 
 
This section presents the characterisation of each of the fourteen intra-
mathematical connections identified from Lu’s productions when solving the 
tasks posed, and which are later denoted by Ci, i = 1, 2, …, 14 . Such 
connections are associated with the mathematical concepts: group, subgroup, 
Lagrange theorem, cyclic groups, isomorphism, and isomorphic groups. Only 
nine of the ten types of connections were identified, which fell into one or 
more categories of the following: different representations, comparison 
through common features, characteristic/property, connecting methods, 
procedure, part-whole relations, implication, derivation, and meaning (see 
Table 2). 
 

Table 2  
Mathematical connections identified in tasks solved by Lu 

 
Concepts Mathematical connections Type of connection 

Group and subgroup (C1) A subgroup is a group whose elements are 
contained in the main group. 

Meaning 
Derivation 

 (C2) A subset is a subgroup with the group’s 
restricted operation. 

Characteristic/Property 

 (C3) To find the subgroups of a finite group, the 
subsets that satisfy the group properties are 
verified one by one. 

Procedure 
Different 
representations 
Connecting methods 

 (C4) Each group has as subgroups the trivial and 
the total. 

Implication 

 (C5) The identity is an element that belongs to 
any subgroup. 

Characteristic/Property 

Lagrange theorem ( C6 ) Any finite subgroup order divides the 
group order. 

Implication 

 (C7) A group G of prime order has as subgroups 
only the trivial and the total. 

Implication 
Derivation 

 (C8) The order of any element divides the group 
order. 

Comparison through 
common features 
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Table 2 (continue) 
Mathematical connections identified in tasks solved by Lu 

 
Concepts Mathematical connections Type of connection 

Cyclic group (C9) The generator of a finite group G is an 
element that, when applied n times, all the 
elements of G are obtained. 

Meaning 

 (C10 ) A group of prime order is necessarily 
cyclic. 

Implication 

Isomorphism and 
isomorphic groups 

(C11) The table of a group G with generating 
element α is similar to that of the group (ℤ3, 
+3). 

Comparison through 
common features 
Derivation 

 (C12) Groups of order three are similar. Comparison through 
common features 
Derivation 

 (C13) Two groups of order five can be seen as 
the same group changing names to preserve 
operations. 

Derivation 

 (C14) There is only one group of prime order, 
except for the denomination of the elements. 

Part-whole relations 

 
Below is the analysis of some extracts of the three interview sessions where 

the fourteen identified connections are shown, as well as the type of 
connection, regarding mathematical concepts with which they are associated: 
group and subgroup, Lagrange theorem, cyclic groups, isomorphism, and 
isomorphic groups. 
  
Mathematical Connections Associated with the Concepts of 
Group and Subgroup 
 
Understanding the concept of group isomorphism involves, among other 
things, understanding the concept of group, while the concept of subgroup is 
derived from it and can be intuitively considered as one group that is contained 
in another, taking into account that the operation must coincide. In particular, 
when Lu was asked to determine the subgroups of specific finite groups (task 
1), we identified five mathematical connections, which we explain below: 

(C1) A subgroup is a group whose elements are contained in the 
main group. Lu associated the term subgroup with the meaning of 
inclusion. To explain what a subgroup is, she based her knowledge on 
the concept of group, specifically, on the fulfilment of axioms: the 
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existence of an identity element, inverses, closure, and associativity. 
So, Lu also established a derivation-type connection. The following 
episode alludes to the discussion about subgroups of (S2, ∘). 

Interviewer: You are asked to determine how many subgroups 
(S2, ∘) has. What is a subgroup? 
Lu: It is a group whose elements are contained in the largest group. 
Well, would it be [(S2, ∘) it is a subgroup] ...	ℝ is it a subgroup of 
ℝ? [refers to group (ℝ,+)] …	ℝ would it be a subgroup of ℝ? If so, 
we have a subgroup that is the subgroup itself ... if there were, more 
subgroups they would be each of the elements, but that means that 
each element must comply with all the group properties ... then only 
the identity [refers to {(1)} as another subgroup of S2]. 

(C2) A subset is a subgroup with the group’s restricted operation. 
Lu became aware of this connection after working with the different groups 
included in task 1, especially working with whole modules n. Said connection 
emerged from connection C1 , when the student associated the concept of 
subgroup with the fulfilment of the closure property and deduced that a subset 
should be a subgroup with the restricted operation of the group. In this sense, 
Lu recognised a feature that constitutes or is part of a subgroup. 

Interviewer: You say that one subgroup of (ℤ3,+3) is the subset that 
contains the identity and another is ℤ3. ... Are they all subgroups of 
(ℤ3,+3)?  
Lu: Let’s see, it must be a subset, and it must be a group with the 
operation, here [the subset {0, 1}] would be with sum 2 [it means 
adding module 2] or with sum 3? In my opinion, it could be subgroup 
if it is with sum 2, if it is with sum 3 it is not subgroup, but then the 
other option is {1, 2} or {0, 2} [subsets of ℤ3 ], they are not 
subgroups with sum 3, too, because here it would be 2 and here it 
would be 0 and 0 does not belong here. And here, we would have {0, 
2} and 1 doesn’t belong here. 

(C3) To find the subgroups of a finite group, the subsets that satisfy 
the group properties are verified one by one. For groups of order n that 
Lu investigated, she verified for all subsets of possible combinations with one, 
two, up to n elements of the group in search of those that fulfilled the axioms 
of a group. This procedure-type connection was identified when Lu 
determined all subgroups of a given group and emerged when  C&  and C2 
were settled. She also used alternative representations to refer to a subgroup. 
Besides the informal definition of this concept, Lu relied on the operation 
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tables to decide whether a subset was a subgroup (connecting methods). We 
show the following interview episode, for the specific case of determining all 
subgroups of G 	= {(1),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)} ⊂ S4 , with the 
composition. 

Lu: How many subgroups does G have? Let’s see, is this 
[{(1 2) (3 4)}] a subgroup? Yeah, right?  
Interviewer: How do you know? 
Lu: (1 2) (3 4) composition (1 2) (3 4) ... the 4 sends it to the 3, and 
the 3 sends it to the 4, it is the identity in S4. 
Interviewer: Is [{(1 2) (3 4)}] a subgroup? 
Lu: No, because it’s not there. Then the same thing would happen 
here [(1 3) (2 4)], because if you send it and I apply it again and that 
same one returns it. And with this [(1 4) (2 3)], it would be the same. 
Of two [elements], if I apply identity [(1)] and * [* = (1 2) (3 4) in 
Figure 2], here [when operating * and *] we already saw that it gives 
us the identity and here [when operating (1) and *], it would give us 
* and here the identity [when operating (1) and (1)]. But if this 
[(1 3) (2 4)] we, do it **, the 1 sends it to the 3 and the 3 returns it 
[{**, (1)} , it is another subgroup of two elements. Also 
{(1), (1 4) (2 3)}]. And of three [elements]… 
 
 
 
 
 
 
 
 

Figure 2. Use of the operation table to verify whether {(1),(1 2)	(3 4)} is a 
subgroup. 

 
(C4) Each group has as subgroups the trivial and the total. This 

connection was established when from the connections C1, C2, and C3, Lu 
deduced that the subset containing the identity element and the group itself 
were subgroups, which she called “neutral” and “total”, during the 
determination of the subgroups of the groups proposed. Lu made an 
implication-type connection by recognising trivial and total subgroups as 
subgroups of any group. 
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Lu: For any group, the neutral is a subgroup, and a group can be a 
subgroup of itself.  
Interviewer: How could you be sure? 
Lu: Well, if it is a group, it will fulfil them [the axioms of a group]. 

(C5) The identity is an element that belongs to any subgroup. This 
connection was established when Lu highlighted the singularity of the identity 
element in a group and concluded that combinations of elements (the subsets) 
that did not contain it, could not be considered as possible subgroups from the 
fulfilment of the axioms of a group. Therefore, Lu recognised a feature that 
constitutes or is part of a subgroup. 

Interviewer: What is the relationship between the order of the group 
and the order of any of its subgroups? 
Lu: Well, at most, they can be the group order because the group is 
a subgroup of the group ... and a subgroup of cardinality one, too. 
Because well, I just sensed that the operation we are going to occupy 
is that of the main group, if that is so, any other element of the group 
can’t act like the identity, and in the subgroup, we need an identity. 
... For it to be a group, a subset must have an identity, so how is it 
going to be a subgroup if we remove the identity? Another element 
would need to act as identity, but if another element acts as identity, 
then there would be two identities. 

 
Mathematical Connections Associated with the Lagrange 
Theorem 
 
The relationship between a group order and the order of its subgroups is 
expressed by the Lagrange theorem. From this theorem, it is also possible to 
deduce the relationship between a group order and the order of its elements. 
The three mathematical connections that Lu established with this theorem are 
presented below. These connections emerged from her failure to initially 
consider establishing an equality relationship when operating subgroup orders 
to, somehow, obtain the group order. 

(C6) Any finite subgroup order divides the group order. During the 
discussion of the relationship between a group order and its subgroups of task 
1, Lu established this implication-type connection from observing and 
analysing the table she built with the seven groups and their respective 
subgroups where in all cases, the order of any subgroup divided the group 
order. During the interview, Lu was also questioned about the possible 
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subgroups of a group of order eight, where she showed that she was aware 
that a group could not have a subgroup whose order does not divide the group 
order. 

Interviewer: What is the relationship between the group order and 
the order of any of its subgroups? 
Lu: [Builds a table with the groups and their respective previously 
determined subgroups, see Figure 3] All you ask is that by dividing 
them by an integer? 
Interviewer: What does that mean? 
Lu: It would be the group order between the subgroup order, integer, 
... maximum group order. ... They are, what are the names of the 
numbers that divide another number? Divisors? Yes. 
Interviewer: For example, for a group of order eight, what order 
could the possible subgroups be? ... Is it possible there’s one of order 
four? 
Lu: Yes, I think so and of order two maybe also, although we cannot 
be sure, it depends on the group. 
Interviewer: Why do you say that a group of order eight can have a 
subgroup of order four or two? 
Lu: Because the four divides eight, and the two divides eight. I mean, 
what I’m saying here is that there’s not going to be one in order five 
in order eight because five doesn’t divide eight. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparative table between the group order and the order of its respective 
subgroups. 
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(C7) A group G of prime order has as subgroups only the trivial 
and the total. This connection emerged from the relationship that she 
managed to establish between the orders of a group and any of its subgroups 
(see connection C' ). Lu argued that, for groups of prime order, the only 
subgroups they have are the trivial and the total. Therefore, she made 
derivation and implication-type connections. 

Interviewer: How do you determine all the subgroups that a group of 
prime order has?  
Lu: If what I’m saying is that the order of the subgroup divides the 
order of the group, we need a number that divides, that can divide 
that order of the group, but if the group order is prime, they would 
be 1 and the same number. So, ... for 1 to divide it, it means that it is 
of order one, that it is the neutral, and that the same number divides 
it, it means it is the total.  

( C8 ) The order of any element divides the group order. This 
connection emerged after the discussion about the generators of a group of 
prime order and the establishment of the connection C10, when Lu became 
aware of the relationship between the order of the generating element and the 
order of the subgroup that it generates from the resolution of tasks 4, 5, and 6. 
Lu was based on the feature of equality that she observed between the 
respective orders, concluding that the order of an element divides the order of 
the group, making a comparison-type connection through common features. 

Interviewer: In the next task, given G = (ℤ5,+5) and x ∈ G. What 
can you say about the generated by x? What is the relationship 
between the order of x and the order of the generated by x? 
Lu: Well, this [refers to (ℤ5,+5)] is of prime order, so it’s only going 
to have [subgroups] the neutral and the total. ... The order of the 
[generator] element is equal to the order of the subgroup it generates. 
I had said before that the order of the subgroup can divide the order 
of the group; if it is the same as that of the order of the element, then 
the order of the element can divide the order of the group. 

 
Mathematical Connections Associated with the Concept of Cyclic 
Group 
 
A group is cyclic if it can be generated by one of its elements (generator). In 
the finite context, the elements of the group are obtained by operating the 
generator several times with itself. In particular, in a group of prime order, 
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every element, except identity, is a generator. The two mathematical 
connections that Lu established with this concept were the following: 

(C9) The generator of a finite group G is an element that, when 
applied n times, all the elements of G are obtained. This connection 
arose from reflecting on task 3 and was subsequently applied in tasks 4, 5 and 
6 (see Figure 4) involving finite cyclic groups. The meaning that Lu attributed 
to the generating term was that of an element from which all the elements of 
the group are constructed. Specifically, from successive powers of an element, 
which at some point produces the identity. These powers can be positive, 
negative or zero. 

 
 
 

 
 
 
 
 
 
 

Figure 4. The generating elements of the group (ℤ5,+5). 
 

Interviewer: What does it mean that an element is a generator of the 
group? 
Lu: The generator is that you take an element, and you will apply it 
n times, and you get all the elements of the group (see Figure 5). 
 
 
 
 
 

Figure 5. The generator is an element from which all the elements of the group are 
constructed. 

 
(C10) A group of prime order is necessarily cyclic. This connection 

emerged when Lu established the connection  C7  with the feature of the 
subgroups of a group of prime order. Faced with the question, what can be 
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said about the subgroup generated by an element x of G, if G is of prime order? 
Lu noted that the one generated by the element x was equal to the total 
subgroup, due to the impossibility that the identity element generates G. 
Therefore, the only restriction was that element x was different from the 
identity. Lu stated that all elements, except for the identity, were generators 
of the group, establishing an implication-type connection. 

Interviewer: If G is a prime order group, p and x is an element of G, 
what can be said about the subgroup generated by x? 
Lu: The set generated by x is subgroup, then [she writes < x >	=
G]. For example, in ℤp, what elements can ℤp generate? Zero cannot 
generate it because, when applied several times, zero will always 
give zero. I don’t know which element is x, but we have exceptions 
for it to be subgroup or subgroups of G. We have two, one is this 
[trivial], and the other is this [total]. If it is a subgroup generated by 
x, it means that x is an element of the group. In this case, it would be 
an element ... that generates a subgroup, and since we only have two 
possibilities of subgroup, then the one generated by x is G.  

 
Mathematical Connections Associated with the Concepts of 
Isomorphism and Isomorphic Groups 
 
Understanding the concept of isomorphism is central to classify groups of 
prime order (p): there is only one group of a given prime order (the cyclic 
order group p). In other words, all groups of order p, where p is a prime 
number, are isomorphic. Here are three mathematical connections associated 
with the concepts of isomorphism and isomorphic groups: 

(C11) The table of a group G with generating element α is similar 
to that of the group (ℤ3, +3). Task 7 required constructing the operation 
table of a group G of order three with generator element α. Lu was expected 
to associate the idea that, if α is a generator of the group, from α, all the 
elements of the group, i.e., the total subgroup, can be obtained. This task was 
not easy for Lu, who established derivation and comparison connections 
through common features when she relied on knowledge of the properties of 
the group (ℤ3,+3) and its table to construct that of group G and, from this, 
concluded that they were similar (see Figure 6).  
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Figure 6. Table of a group G of order three with generating element α based on 
group (ℤ3,+3). 

 
Interviewer: Consider a group G with generating element α. You are 
asked to build the table of said group. 
Lu: One could be ℤ3 with 0, 1, and 2 [constructs table of (ℤ3,+3)]. 
... The elements would be α0 , α1  and α2 . Because whatever is 
generated, I understand that we have α and then we start α0 that it 
would be like 1[in (ℤ3,+3).... α0 is the identity. ... Concerning ℤ3, 
the identity, and I have two elements, 1 and 2.  

(C12) Groups of order three are similar. In the construction of another 
group H of order three with generator element β, Lu claimed that the tables of 
G and H were the same/similar. She established a comparison-type connection 
through common features, since her main argument was based on the 
appreciation of similarities between the groups, such as the order of the 
elements and an arrangement of the position of the elements in the operation 
tables. 

Interviewer: You constructed two tables that correspond to groups 
of order three, G and H, with generator elements α and β. Compare 
both tables and determine if groups G and H behave in the same way. 
Lu: I say they are similar. We have an identity in both cases ... and 
in both cases, it is at power three that this identity comes out and we 
have two other elements that are inverse of each other.  
Interviewer: How can you be sure they are similar? 
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Lu: Through the table.  Because if we do here α3 = α0, then either 
α3 or α0 is the identity, and if we change the symbol, it would make 
the table more similar. ... And so, it becomes more evident that the 
tables are the same (see Figure 7). 
Interviewer: Even if they have α and β elements? 
Lu: Yes. As we told you [the term used by the teacher] when the 
tables were similar, that we could change their names? Isomorphic? 
Something like that. 
 
 
 
 
 
 
 
 

Figure 7. Two similar groups of order three. 
 
Lu also made a derivation-type connection when she used her knowledge 

on one group to determine that any other of order three should have a table 
similar to G and H. Her reasoning shows that she considered ℤ3 groups G and 
H as really the same group with different names for the elements and 
operations, from the appreciation of the structural property of the order of the 
elements. 

Lu: Will there be another group of order three other than ℤ3? No, 
because if there were a table where we had identity, identity, identity 
[see the diagonal of the table in Figure 8]; element one and element 
two [fill the table]. ... Is this a group? 
Interviewer: Would that be another group of order three? 
Lu: [verifies the axioms of a group from the table, see Figure 8] and 
it would have to be associative. ... No, it is not a group. 
Interviewer: And if you consider a group of order three with 
generator element γ. 
Lu: Well, the table would be similar to the two previous tables [G 
and H]. The elements that are obtained from γ are γ1 , γ2  and γ3 , 
which would be γ, γ!, and the identity. 
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Figure 8. All groups of order three have tables similar to G and H. 
 

(C13) Two groups of order five can be seen as the same group 
changing names to preserve operations. This connection was identified 
during the construction of the operation table for a group of order five A with 
generator element γ (task 8), which requested an example of another group of 
order five that was not similar to group A.  

Lu focused on showing that there is only one group of order five, and any 
other group would be similar. Besides considering the ownership of the order 
of the elements, she associated the idea of similar groups with the search for 
a relationship that by changing the name of the elements, she could show that 
there is only one group of order five. Not only was she able to give such a 
relationship; she also knew why that renaming proposed worked, establishing 
derivation-type connections, since her argument was based on both the 
property of isomorphism, which allows the renaming of the elements through 
the biunivocal correspondence so that the operation tables look “similar”, and 
the fact that the tables were “similar” ensures that the preservation of the 
operations is satisfied. 

Interviewer: Could you give an example of a group of order five that 
does not behave in the same way as the previous one [group A]? ... 
How did you establish that relationship [between groups A and G]? 
Lu:  γ2 with b because it is a2, c is a3and d is a4. 
Interviewer: Could you explain how you are operating between the 
elements?  
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Lu: We have γ2 to correspond to b and we have γ ... and γ is a (see 
Figure 9). So, we have a operation b, which equals a2 with a, which 
is equal to a3, which is c, and c by the relation is this [γ3]. 
Interviewer: So how do you know that the change you made actually 
shows that the tables are the same with elements denoted with 
different symbols? 
Lu: Because it is the same, exactly the same ... it is fulfilled for 
everyone. It is fulfilled because the relationship is fine. 
Interviewer: Is this other group G different from group A? 
Lu: No. That is, in strict order, they are not the same because they 
are not the same elements, but they behave similarly. So, if we look 
at it for behaviour, they are the same. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Groups of order five are similar. 
 

(C14 ) There is only one group of prime order, except for the 
denomination of the elements. This connection emerged from the 
connections C12 and C13, when the student generalised it for any group of 
prime order. Lu associated the result that, in a group of prime order, all 
elements different from the identity are generators, and from that element, it 
was possible to build its table of operations. She showed that the tables were 
“similar” and, therefore, the groups were “similar”, establishing a part-whole 
relations-type connection, since she recognised groups of order three and five 
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as specific instances of a finite group of prime order. Lu concluded that, in 
general, there is only one group of prime order given, except for the 
denomination of the elements.  

Interviewer: How many groups are there in a given prime order p? 
Lu: That its order is prime means that all the elements it has, except 
for the identity, will generate it, which means that one can take any 
of its elements and build its table ... the table of an arbitrarily selected 
element... That is, we have all [groups of order p denoted 
differently], I arbitrarily take one of each of them [elements], I build 
their table, and I see that the tables behave similarly, i.e., it is the 
same ... there will always be one [a single group of a given prime 
order]. 

 
Conclusions 

 
This research reports the intra-mathematical connections included in the 
classification of groups of prime order from a case study. Five connections 
associated with the concepts of group and subgroup were identified, three 
related to the Lagrange theorem, two with the cyclic groups, and four with the 
concepts of isomorphism and isomorphic groups. Each of the fourteen 
mathematical connections was associated with one or more categories (types 
of connections). 

Results indicate that, on most tasks, Lu became aware of the mathematical 
connections established once she solved them or reflected on the results and 
procedures performed. Although Lu made connections between concepts, 
definitions, and procedures when approaching the tasks, her knowledge of the 
concepts and the mathematical results underlying the classification of groups 
of prime order was limited, which could explain the insubstantial use of 
connections of the types: different representations, characteristic/property, 
and connecting methods. In this sense, the results show that in the task solving 
process, Lu was discovering, building, and using her new knowledge to move 
forward, which explains the frequency of derivation and implication-type 
connections.  

The type of tasks that considered specific groups favoured exploration and 
discovery from the establishment of comparison-type connections through 
common features, characteristic/property, derivation, and implication, which 
agrees with the ideas of Hazzan and Zazkis (1999), who point out that the 
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construction of significant mathematical notions requires recognising the 
similarities of general ideas in different particular examples to discover their 
structure and common attributes. 

On the other hand, Lu established a derivation-type connection (C13) 
when she recognised that two groups of order five could be seen as the same 
group by changing names to preserve the operations. In other words, she used 
the concept of isomorphism as bijective homomorphism and associated the 
idea of similar groups with the search for a relationship that, by renaming the 
elements, could show that there is only one group of order five. This result 
differs from other studies that show that the students’ conceptualisation of 
isomorphic groups as similar groups is associated with a literal interpretation 
of this word, while preservation of operations is not perceived from the idea 
of similar groups (Lajoie, 2000; Leron et al., 1995). However, we could not 
be sure whether Lu saw isomorphism as an equivalence relationship, which 
allows classifying the groups “up to isomorphism.” 

It also shows a dependence between connections, in the sense that, for 
example, to establish the connection C14 , it was essential for Lu to make the 
connections C12 and C13. In other words, the connection “there is only one 
group of prime order, except for the denomination of the elements” was 
derived from Lu’s generalisation of the specific cases of groups of order three 
and five: “groups of order three are similar” and “two groups of order five can 
be seen as the same group changing names to preserve operations”, 
respectively. This dependency is related to the student’s level of 
understanding and the use of that knowledge in solving the tasks posed.  
Finally, from this research, an educational implication from the identification 
of mathematical connections corresponds to the design of tasks to establish 
explicit connections to strengthen the understanding of the concepts and 
results underlying the classification of groups of prime order. It also highlights 
the use of mathematics history and epistemology to favour the presentation of 
concepts, theorems, methods, and algorithms (in-issues) connected to students 
about the problems and ideas that generated them. 
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