

 192 REnCiMa, v. 10, n.4, p. 192-211, 2019

UMA ESTRATÉGIA DE APRENDIZAGEM COOPERATIVA PARA
DESENVOLVIMENTO DO PENSAMENTO COMPUTACIONAL POR MEIO

DE ATIVIDADES DE PRODUÇÃO DE JOGOS DIGITAIS

A COOPERATIVE LEARNING STRATEGY TO COMPUTATIONAL THINKING
DEVELOPMENT

Ângelo Magno de Jesus

Universidade Cruzeiro do Sul/Instituto Federal de Minas Gerais,

angelo.jesus@ifmg.edu.br

Ismar Frango Silveira

Universidade Cruzeiro do Sul/Universidade Presbiteriana Mackenzie,

ismar.silveira@cruzeirodosul.edu.br

Resumo

A inclusão do Pensamento Computacional (PC) em sala de aula pode trazer grandes

avanços para a educação. Através do Pensamento Computacional, os alunos podem

exercitar o raciocínio lógico, resolver problemas complexos, lidar com a abstração entre

outras habilidades. A colaboração também é um aspecto fundamental da aprendizagem.

Interações sociais entre estudantes que podem advir de métodos cooperativos de

aprendizagem podem contribuir para a construção de conhecimento de diferentes

maneiras. Este artigo descreve uma estratégia de Aprendizagem Cooperativa para

mobilizar habilidades do PC em estudantes. Características fundamentais do conceito de

Aprendizagem Colaborativa e Cooperativa da literatura foram estudadas e projetadas para

se encaixar na estratégia proposta. Além disso, o método proposto utiliza abordagens de

Desenvolvimento de Jogos Digitais para envolver os alunos. Uma análise da estratégia foi

feita por meio de atividades realizadas com grupos de alunos das séries finais do ensino

fundamental. Foram investigados os artefatos produzidos e as interações entre estudantes.

Os resultados mostraram que a estratégia foi capaz de mobilizar estratégias de resolução

de problemas do PC e reflexões sobre as interações sociais no grupo.

Palavras-chave: Aprendizagem Cooperativa, Pensamento Computacional, Jogos.

Abstract

In Including Computational Thinking (CT) in the classroom can bring great advances to

education. Through Computational Thinking, students can exercise logical reasoning, solve

complex problems, deal with abstraction and other skills. Collaboration is also a key aspect

of learning. Social interactions between students wreaked from cooperative learning

methods could contribute to build knowledge in different ways. This article describes the

development of a Cooperative Learning strategy to support and mobilize CT skills in

 193 REnCiMa, v. 10, n.4, p. 192-211, 2019

students. Fundamental features of cooperative learning concepts from the literature have

been studied and designed to fit the proposed learning strategy. Also, the proposed method

uses Game Development approaches in order to engage learners. In addition to being

present in students' daily lives, digital games enable direct interaction by giving feedbacks

to student commands via animated graphics. A strategy analysis was performed through

activities carried out with groups of students from the elementary schools' final series. We

investigated the created artifacts and the interactions between students. The results showed

that the approach was capable to mobilize CT problem-solving strategies and reflections

about social interactions in the group.

Keywords: Cooperative Learning, Computational Thinking, Games.

Introduction

Papert and Solomon (1971) presented a series of activities that could be done by

students at schools using computers in an innovative way. The cited authors already

discussed how concepts of Computer Science affected the way of thinking in biology,

psychology and even in the philosophy of mathematics. From this point on, the ideas of

using computers and computing concepts in education have been developing. Papert (1993)

discusses and presents some situations in which children could build knowledge by making

artifacts - especially technological ones. Obviously, this idea (as Papert states) comes from

Jean Piaget`s constructivism, but Papert gives special attention to building real-life artifacts,

such as an automated little house built with Lego blocks. The potential of computers comes,

from its huge possibility of creation. Computer programming is a skill that emerges from

Computer Science. Later, Wing (2006)'s work received notoriety among researchers from

the computing and education's community. Wing (2006), as well as Papert, proposes the

computer science mindset as a essential skills to be learned by all, including to solve

problems of various knowledge fields. However, the researcher emphasized in her

discussion, tools and concepts of Computer Science that go beyond the use of computers.

This approach has been called Computational Thinking and has been highlighted by several

researchers that aimed to improve learning and teaching at different education levels.

Computational Thinking involves problem-solving from different domains so that solutions

can be represented on a computer in the shape of algorithms or data. However, teaching

Computational Thinking should not be limited to transfer technical skills, but should also

include the creation of an environment with motivations, feelings, and attitudes that require

teamwork for a common purpose (BARR and STEPHENSON, 2011). This aspect leads us

to another important concept of this study, the Cooperative Learning.

It's not a surprise that cooperation is a positive circumstance for learning. Since the

beginning of their existence, human beings have been carrying out collective activities such

as hunting and fishing. We are social beings. Vygotsky's sociocultural theory, according to

Moreira (2011), already emphasized the importance of social interactions in the learning

process. According to the sociocultural theory, learning occurs first in higher mental

 194 REnCiMa, v. 10, n.4, p. 192-211, 2019

processes (thought, language and voluntary behavior) that have their origin in social

processes. So cognitive development is the conversion of social relations into mental

functions (MOREIRA, 2011). Obviously, Cooperative Learning involves using social

interactions to learn and build knowledge.

In addition to Cooperative Learning, Digital Games Design and Development can be

important allies in Computational Thinking. According to Barcelos (2014), strategies of digital

games development are often used by researchers with the justification that games provide

a great attraction for new generations' students. Some evidence of digital game

development notoriety comes from the popularity of Scratch - a programming environment

used to design animations and digital games. Scratch is used in more than 150 different

countries and is available in more than 40 languages (MIT MEDIA LAB, 2019).

This article aims to describe a Cooperative Learning strategy for computational

thinking development in digital games production activities. In the study Jesus and Silveira

(2019), we present an overview of the strategy focused on the use of digital games. Based

on this experience, this article describes an improved strategy focused on digital game

development, with changes in method stages and using special materials. In order to

evaluate how the proposed approach can mobilize learner's problem-solving strategies, the

sessions were recorded. So that students’ interactions and strategic decisions could be

analyzed. The artifacts produced in the activities were also evaluated.

Computational Thinking

Education professionals have always attempted to encourage students to take a less

passive attitude and to work actively in order to solve complex questions in different fields

of knowledge. Computational Thinking can be a way to assist reaching this goal. Wing

(2006) describes Computational Thinking as Computer Scientists think: it means more than

being able to program a computer. Barr and Stephenson (2011) gives a definition for

Computational Thinking in K-12 classrooms:

CT is an approach to solving problems in a way that can be implemented with a

computer. Students become not merely too users but tool builders. They use a set

of concepts, such as abstraction, recursion, and iteration, to process and analyze

data, and to create real and virtual artifacts. CT is a problem-solving methodology

that can be automated and transferred and applied across subjects.

(Barr and Stephenson, 2011, p.51)

As Brackmann (2017) describes, Computational Thinking is associated with four

dimensions that can be seen as its main pillars. These dimensions are described below:

• Abstraction: Selecting relevant data to represent an idea(s).

• Decomposition: Breaking down problems into smaller, manageable parts in order

to solve it.

• Pattern Recognition: Analyzing trends and sequences that repeat in data or

situations.

• Algorithm Design: Designing an ordered series of instructions for solving problems

or for doing a task.

 195 REnCiMa, v. 10, n.4, p. 192-211, 2019

The application of Computational Thinking in the classroom is directly related to

Cooperative Learning. Barr and Stephenson (2011) cite values, feelings, attitudes of

Computational Thinking that include: "setting aside differences to work with others to

achieve a common goal or solution”; and “knowing one's strengths and weaknesses when

working with others”. Also, the authors cite that Computational Thinking should create a

classroom culture that involves team work by students, with explicit use of decomposition,

abstraction, negotiation and consensus building. Negotiation is related groups within the

team working together to merge parts of the solution into the whole. Consensus building is

associated with working to build group solidarity behind one idea or solution. Technologies,

which can be used in Computational Thinking, can also be an important element. According

to Webber and Vieira (2010), in collaborative scenarios, technologies take on roles in

communication, mediation and motivation of the participants, contributing to the processes

of interaction and learning.

Collaborative and Cooperative Learning

Although it seems to be a relatively simple concept, many people are mistaken about

what Cooperative Learning really is. Johnson et al. (1984) state that cooperation is not

having students sit side-by-side at the same table talking with each other and doing their

individual assignments. As the authors explain, cooperation is much more than keeping

students physically close, helping other students, or sharing materials with each other -

although these are important acts of cooperation. The authors explained that positive

interdependence, face-to-face interaction among students, individual accountability and

appropriately use of interpersonal and small-group skills are basics elements of Cooperative

Learning.

Dillenbourg (2007) states that there is a broad definition of collaborative learning: it is

a situation in which two or more people learn or attempt to learn something together. The

author argues that this definition is unsatisfactory because each element can be interpreted

with different meanings. So, Dillenbourg (2007) defines collaborative learning as below:

In summary, the words 'collaborative learning' describe a situation in which particular

forms of interaction among people are expected to occur, which would trigger

learning mechanisms, but there is no guarantee that the expected interactions will

actually occur. Hence, a general concern is to develop ways to increase the

probability that some types of interaction occur. (DILLENBOURG, 2007, p. 5)

The term Collaborative Learning has been used in different contexts with different

characteristics. Many authors don't differentiate Collaborative and Cooperative Learning,

assuming that they are the same concept. Besides that, some authors have made efforts to

distinguish between the two concepts (PANITIZ, 1999).

According to Panitiz (1999) cooperation could be seem as an structure of interaction

designed to facilitate the accomplishment of an specific end product or goal through people

working together in groups. In a learning context, it`s a classroom technique. On the other

hand, collaboration is a lifestyle and an interaction's philosophy between people. Individuals

are responsible for their actions and should respect and highlight the contributions and skills

of others. In this way, Collaborative Learning extrapolates the fact that it is only a teaching

 196 REnCiMa, v. 10, n.4, p. 192-211, 2019

approach. A collaborative group can collaborate spontaneously in a variety of situations.

People interact in order to reach a goal without having an obligation to do so.

According to Matthews et al. (1995), there are aspects in which collaborative and

cooperative learning may diverge. As the authors claim, within the context of small-group

learning, there is a wide range of views about: the issue of authority and power relationships

between teacher and student; the style, function or degree of the teacher's involvement; the

extent to which students need to be trained to work together in groups; how knowledge is

assimilated or constructed; the purpose of groups to emphasize different outcomes such as

the mastery of facts, the development of judgment, and/or the construction of knowledge;

the importance of different aspects of personal, social, and/or cognitive growth among

students; and many additional implementation concerns including, for example, group

formation, task construction, and the degree of individual and/or group accountability

necessary to ensure equitable distribution of work and accurate grading.

In this article, we consider the proposed approach as a Cooperative Learning

strategy, however there is a possibility that students learn to take the collaboration

philosophy out of the classroom, thus becoming a collaborative approach.

Cooperative Learning Features

Cooperative/Collaborative learning approaches involve a variety of features. Table 1

shows different cooperative and collaborative learning features grouped per line. It's

important to observe that we clustered only the concepts that we considered explicit. This

grouping is important to reduce the complexity of the cooperative strategy. It’s possible to

verify that there are other implicit connections between concepts.

Table 1: Fontes de leitura dos alunos excluindo os livros didáticos.

ID Collaborative/Cooperative Feature Source

A Positive interdependence; Members must have
the feeling of belonging to the same team;

Shared goal; Success or failure will be shared by
all members.

Johnson et al. (1984),
National Concil of Teachers of
Math from Panitz (1999) and

Dillenbourg (2007) on a
Collaborative Situation.

B Individual accountability; Individual work has a
direct effect in the group`s success.

Johnson et al. (1984),
National Concil of Teachers of

Math from Panitz (1999).

C Heterogeneous Johnson et al. (1984).

D Shared leadership; Sharing of authority;
Consensus building.

Johnson et al. (1984), Panitiz
(1999).

E Shared responsibility for each other; Students
teach each other by peer-to-peer exchange.

Johnson et al. (1984), Torres
and Irala (2014).

F Task and maintenance emphasized Johnson et al. (1984).

G Social skills directly taught; All students must talk
with another to engage in discussion of all

problems.

Johnson et al. (1984),
National Concil of Teachers of

Math from Panitz (1999).

 197 REnCiMa, v. 10, n.4, p. 192-211, 2019

H Teacher observes and intervenes; Teacher as
facilitator; Student centered; Loose - trusting

students to do.

Johnson et al. (1984), Torres
and Irala (2014) and Lee

(199-?) apud Panitiz (1999).

I Group processes their effectiveness. Johnson et al. (1984)

J Respects and highlights individual group
members`abilities and contributions.

Panitiz (1999)

K Metacognition's skills development; Knowledge
construction.

Torres and Irala (2014) and
Lee (199-?) apud Panitiz

(1999).

L Symmetry - peers with approximately the same
level that can perform the same actions.

Dillenbourg (2007) on a
Collaborative Situation.

M Division of labour - work together. Dillenbourg (2007) on a
Collaborative Situation.

N Intrinsic motivation. Lee (199-?) apud Panitiz
(1999).

Game Design and Development as a Learning Strategy

 Lee et al. (2011) explain that Game Design and Development is one of the domains

where Computational Thinking takes place. The authors state when learners are designing

and developing games, they are exercising skills like: (1) Abstraction - games are abstracted

into a set of scenes containing characters; (2) Automation - game responds to user actions;

and (3) Analysis - students need to investigate if the elements incorporated make the game

fun to play.

Developing games can be fun, Feijó, Silva and Clua (2010) argue that this is a

magical, fascinating and challenging activity. The authors assume that digital games are

softwares that have the main requirement to entertain its users. In addition, to produce a

digital game it's necessary to put into practice many elements of Computer Science such as

artificial intelligence, graphics modules, multimedia, etc.

Related Work

Interesting initiatives have been carried out with the purpose of developing

Computational Thinking skills in a cooperative/collaborative way. It's a field that has a wide

variety of open issues and procedures possibilities, so more researches are still necessary.

In this section, we will present some studies related to the approach proposed in this article.

Fronza, Ioini and Corral (2017) proposed the Framework, based on Agile Software

Engineering Methods, in order to teach Computational Thinking for middle schools. The

framework use iterative processes and allows students to use brainstorming, mind maps

and storyboards to develop games and animations. The authors applied the method using

Scratch with two sixth-grade classes. Project analysis and artifact-based interviews were

used to assess the approach. According to the researchers, the results showed that the

framework is promising because students are encouraged to think about their processes

and need to be able to define the concept and use it.

The Coding Pirates initiative was presented by Tabel et al. (2017). Coding Pirates is

a nonprofit social organization dedicated to promoting computational competencies for

 198 REnCiMa, v. 10, n.4, p. 192-211, 2019

children between 7 and 17 years old. Tabel et al. (2017) describe workshops promoting

programming as a social activity. The authors applied Peer Programming approach with the

Scratch environment. They state that the workshops achieved great success regarding to

collaboration within teams and within the whole class. The authors also point out the

importance of creating strategies to move beyond keyboard and screen, creating new

classroom experiences that foster the engagement of computational thinking.

A teaching strategy as a support tool in the learning of Programming Logic and Basic

Electronics is presented by Aquino Filho, Schimiguel and Amaral (2016). The approach

adopted a blog, as a collaborative environment, and a learning object. The authors

developed a learning object called Kweb. The approach was used with students of a

technical course in Mechatronics and Industrial Automation. Surveys were applied to verify

the student's level of knowledge and to analyze the learning object usability. The results

showed that the strategy enabled students to learn in a more meaningful and motivating

way.

Materials and Method

The proposed strategy was designed to fit all cooperative features from Table 1.

Figure 1 shows the overview of the proposed cooperative learning strategy. As can be

observed, the strategy is composed of 6 stages, each step attempts to explore different

cooperative elements described above. It should be noted that Figure 1 was adapted from

Jesus and Silveira (2019, in press) since the proposed procedure went through a refinement,

changes were made in the order of the stages.

 199 REnCiMa, v. 10, n.4, p. 192-211, 2019

Figure 1: Stages of the Proposed Learning Strategy

 To perform the activities, it is recommended to use the following materials: various

post-its, colored pens, a stopwatch, a timer or an hourglass, a small blank or paperboard

(preferably cardboard) at least A4 size (Figure 2). In addition, it's also necessary to use at

least one computer per team. Before starting the activities, the learners' group can create a

web page or a social network group so they can share their ideas with other groups. The

stages and use of the materials will be described more detailed in the following paragraphs.

 200 REnCiMa, v. 10, n.4, p. 192-211, 2019

Figure 2: Materials to perform the Cooperative Learning Strategy

Planning - At this stage, the teacher and the students plan a feature or even an entire

game to be developed. The game represents the problem/goal to be achieved by the group.

Learners can discuss freely, but the teacher must intervene to keep the goal viable to be

reached according to the students' current knowledge. The teacher should also be

concerned in supporting the goal according to the Computational Thinks concepts which

need to be developed. According to Jesus and Silveira (2019, in press) some questions

need to be raised at this stage: "What are the previous expectations? What previous

knowledge do they have to solve the problems that may arise? What knowledge do they

want to achieve? Which product/solution is expected?”.

Planning is related to the following cooperative features: "A - Positive

interdependence; D - Shared leadership, G - Social skills directly taught; H - Teacher

observes and intervenes; M - Division of labour - work together; and N - Intrinsic motivation”

(JESUS and SILVEIRA, 2019, in press).

Hands On - At this stage, the teacher should apply a workshop addressing the

concepts that should be used to implement the objective game (proposed in the previous

step). Students should be mindful in order to contribute to the group later. This step is the

most centralized in the teacher.

This step addresses the cooperative feature B-Individual Accountability as students

must learn to help others.

Decomposition - At this stage, students should directly apply the Decomposition

ability of Computational Thinking. Therefore, the group will propose the division of the game

into several sub-tasks that can be implemented and combined in order to create the final

product. Abstraction skills are also necessary because students have to describe imagined

game objects and actions. The teacher should mediate this stage by encouraging students

to interact and checking if the proposals are consistent. A Kanban board should be modeled

by students using some of the materials presented in Figure 2. We suggest that Kanban

should be composed of four sections: (1) Objective, (2) Tasks, (3) In Progress and (4)

Completed. The first section of Kanban should contain the goal, defined in step 1, for the

whole group to observe. When a student proposes a task, he/she should pick up a post-it

and a colored pen, write the task and paste the post-it into the Kanban's tasks section. This

 201 REnCiMa, v. 10, n.4, p. 192-211, 2019

artifact can help in the activity management by allowing the whole group to have a

knowledge of what needs to be done. Figure 3 illustrates the Kanban template proposal.

Decomposition is related to the following cooperative features: "A- Positive

interdependence; D- Shared leadership; F- Task and maintenance emphasized; G- Social

skills directly taught; and M- Division of labour - work together” (JESUS and SILVEIRA,

2019, in press).

Figure 3: Kanban model for the Cooperative Learning Strategy

Pair Programming - In the Pair Programming step, students must implement one of

the defined tasks. This programming model is inspired by Coding Dojo and Agile software

development methodologies that consider the collaboration between developers (SOUZA;

MARCZAK; PRIKLADNICKI, 2011, p.125). Only one computer per group is used, so

students must take turns using it. At this time, it is necessary to use the timer or the

hourglass. It's recommended to use a timer with a cartoon style design, as shown in Figure

2. This object can draw the attention of students to have a relation with the theme and culture

of digital games incorporated in the proposed strategy. Each moment the time runs out,

another learner turns over the pilot, so he/she takes over the keyboard and mouse in order

to program the computer. The other students act as co-pilot assisting the pilot at all periods

in the programming. The task being implemented should be submitted to the In Progress

section of the Kanban board. The teacher's role is only to clarify questions when asked. The

teacher can also take advantage of the moments of peer exchange to intervene.

According to Jesus and Silveira (2019, in press), this step addresses the following

Cooperative Learning features: B - Individual accountability; E- Shared responsibility for

each other; G- Social skills directly taught; J- Respects and highlights individual group

members' abilities and contributions. K- Metacognition`s skills development; and M- Division

of labor.

Tests - The tests take place in association with Peer Programming. At this time,

students can have fun because they must interact with the artifact that they are developing.

Students will also be able to record the solution's gameplay to share on the web page or

social network group of the team. The cooperative features of this step are the same as in

Par Programming.

 202 REnCiMa, v. 10, n.4, p. 192-211, 2019

Reflection - At the end of each session, a quick meeting is required to reflect on the

progress of the team's activity and performance. The group must produce a kind of meeting

minutes. Some questions that can be answered by the group are: (A) Was the goal

achieved? If not, why? (B) What problems were faced? (C) What needs to be improved in

the group interaction? (D) Is the game (becoming) fun? (E) What can be done in the next

session?

In the next session, the teacher can review with the students what they discussed

during the quick meeting so they can think about what actions could be taken during the

activity. As described by Jesus and Silveira (2019, in press), this step includes the following

cooperation features: A- Positive interdependence; D- Shared leadership; F- Task and

maintenance emphasized; G- Social skills directly taught; I- Group processes their

effectiveness; K- Metacognition`s skills development; and N- Intrinsic motivation.

Feature C involves the group being heterogeneous and feature L concerns the group

being symmetrical. As these are points that depend on the team`s composition, these items

must be observed in a pre-performing step where the students are forming the teams.

Data Collection and Analysis

Data gathering and analysis were done through the collection of artifacts produced

by the learners and the audio-visual content of the implementation stages. These

procedures are described below.

Produced Artifacts

The artifacts produced during the sessions were collected and analyzed. Among the
artifacts, we highlight the documents produced in the meetings, the task board (Kanban)
with the defined tasks to solve a problem and the proposed solutions (algorithms/source
code). Each artifact will be analyzed according to the following procedures:

• Kanban: at each session, the resulting task board was photographed and analyzed

in order to verify how students are using the Computational Thinking decomposition

strategy.

• Meeting Minutes: The documents resulting from the reflection meetings will be

collected. Thus, through these artifacts, we analyze and verify whether the group is

managing itself in order to reach its goals and its relation to success/failure in the

proposed activities.

• Proposed solutions: the algorithms produced by the students will be collected and

analyzed. We first analyzed if the products developed by the teams correctly included

key concepts of the Algorithms Design dimension of Computational Thinking

delineated for the workshop. Generally, computer scientists measure the efficiency

of an algorithm in terms of runtime or used space (memory). By means of Algorithm

Analysis techniques, we can count the number of operations, considered relevant,

performed by the algorithm and express it in number. In summary, we verify if the

algorithm uses more steps than it would really be necessary to reach the problem's

resolution or to satisfy the proposed strategy. It should be noted that we also observe

if there are limitations of the algorithm when achieving the proposed task requirement.

 203 REnCiMa, v. 10, n.4, p. 192-211, 2019

So, we need to investigate "if the implementation can always run according to what

was proposed or are there 'bugs'?" This procedure consists in understanding if the

strategies used by the students are really working.

Recording Sessions

The implementation stages (Pair Programming and Tests) were recorded as

audiovisual content with the purpose of studying, more closely, the interaction and adopted

strategies for the solution proposed by the learners. To examine the recordings, we adopted

the episode analysis approach described by Goos and Galbraith (1996) used by the authors

to investigate metacognitive strategies in collaborative mathematical problem solving.

According to these authors, this approach "aims to highlight major strategic decisions,

suggest when they should have been made (if absent) and assess the quality of the

decisions per se". The students' verbal interactions (verbal protocols) were parsed into

macroscopic episodes which represent a session (periods of time) where learners are

engaged in distinctive types of problem-solving behavior. Therefore, these episodes were

classified in Reading, Analysis, Exploration, Planning, Implementation and Verification,

according to Schoenfeld (1985) apud Goos e Galbraith (1996).

Each student's complete speech turn was named Move. To analyze the interpersonal

strategies and contributions of learners working collaboratively, Goos and Galbraith (1996)

propose a kind of classification:

1. New information points were subdivided into two types:

• points where previously overlooked or unrecognized information came to light

(abbreviated as NI)

• points where the possibility of using a new procedure was mentioned

(abbreviated as NP).

 The NI/NP's were classified further according to:

o who initiated the NI/NP

o how relevant the NI/NP was to the task

o the nature of the response to the NI/NP (ignore, reject, accept)

o how appropriate the response was in context.

2. Local Assessments (LA's) of a particular aspect of a solution were classified

according to who made the assessment, and the function of the assessment:

• knowledge (assessing what is known/not known)

• task difficulty

• procedure (checking accuracy of execution, assessing relevance or

usefulness)

• result (assessing accuracy or reasonableness).

3. Global Assessments (GA's) of the general state of the solution were also made.

(GOOS and GALBRAITH, 1996, p. 242)

Due to the nature of Computational Thinking activities having some peculiarities in

relation to generic mathematical problem-solving activities, it was necessary to make some

adaptations in the procedure. These adaptations were:

• The episodes classified as Reading and Analysis are practically non-existent

since the students are guided by the goal and functionalities described in the

 204 REnCiMa, v. 10, n.4, p. 192-211, 2019

Kanban board. Therefore, it is not necessary that students constantly read and

analyze the problem once the task has been defined.

• The procedures (strategies adopted by students) reported by Goos and

Galbraith (1996), in general, are related to the proposal of mathematical

equations, assignments of values to variables of these formulas and calculation.

However, due to the essence of the algorithm design, learners' strategies are

more related to the proposal of new instructions (blocks in visual programming),

logical flow (new combination of blocks), the addition of objects, variables

manipulation among others.

• Not only verbal protocols were considered. The nature of the game development

and programming activity must be performed through technological artifacts, the

interaction with such artifacts can also be seen as a means of communication.

In particular, we use a development environment that works with visual

programming - through blocks. In this way, gestures and students' actions in the

programming environment were also considered. For example, when a student

points to a visual block that hasn't yet been used in the algorithm, we consider

that he/she is proposing a new procedure to add to the solution.

Activities’ Context

The workshops were applied in two public schools and involved students from the

final three years of elementary school. One of the schools was located at the countryside of

a small town. The workshop started with 4 groups. Due to the availability of the students and

other situations described in the next section, these groups changed until the end of the

workshop. The students participated voluntarily, and their legal guardian should have signed

an Informed Consent Form. A total of three sessions were held and they lasted for about

one hour per week, for each team. The groups also went through a session in which they

dealt with the early aspects of game design and development. Therefore, a total of 11

workshop hours were performed.

Because of student's educational level and the number of sessions performed with

each group, it was expected that teams that reached the end of the workshop would be able

to manipulate, in a partially accurate way, the basic concepts of algorithms involving

sequential flow, user input events, conditional commands and repeating (simple loops). As

a development environment, we chose Scratch (MIT MEDIA LAB, 2019) because of its

popularity among children. Developing a game as complete, even simple product, may

require years of experience and several hours of development. In this way, the objective

was to obtain an interactive prototype and not a conclusive product. We, therefore, expect

the partial fulfillment of the game's requirements. The distribution of the team members and

the sessions followed the Table 2 scheme. It’s important to observe that the names of the

students are fictitious in order to preserve their privacy.

Table 2: Sessions and groups composition.

Session Group Group composition Planning Algorithm contents to
be mobilized.

1 Group 1 Daiane, José Pedro
and Hector.

Racing game. Sequential Flow and
user input events.

 205 REnCiMa, v. 10, n.4, p. 192-211, 2019

Group 2 Maria and Kamila. Racing game. Sequential Flow and
user input events.

Group 3 Humberto and
Carlos.

Racing game. Sequential Flow and
user input events.

Group 4 Anália, Aline, Bruna
and Yuri.

"Shooting"
game
(definition
only).

Sequential Flow, user
input events, conditional
structure and repetition
structure.

2 Group 2 Maria and
Humberto.

Same as the
previous
session.

Same as the previous
session.

Group 4 Anália, Aline, Bruna
and Yuri.

Same as the
previous
session.

Same as the previous
session.

3 Group 2 Maria, Kamila and
Humberto

"Shooting"
game.

Same as the previous
session.

Group 4 Anália, Aline, Bruna
and Yuri.

Same as the
previous
session.

Same as the previous
session.

One of the authors acted as a teacher and also performed the data collection. The

teacher pointed out that the "shooting game" (which proved to be a very popular choice

between students) shouldn't make references to firearms. Teams that opted for this option

should use "toy ball gun" or launch something like ninja stars. The teacher also explained

his expectations to the students, as it is understood that developing games is a very complex

task, the students were expected to produce incomplete artifacts with some "bugs".

Obstacles in the Strategy Implementation

It should be noted that we face many barriers to perform the workshop in schools.

Here are some of these difficulties:

• Maintain symmetry between group's members - Symmetry means members

having approximately the same level and can do the same actions (Dillenbourg,

2007, p.7). This feature (item L of Table 1) can't be observed in some moments.

This happened due to a number of factors described below:

• students who volunteered had very different backgrounds;

• some students (four) declared that they did not have access to a computer at

home - which makes the extra class practice harder;

• students had limited scheduling;

• some students missed the sessions forcing some members redistributions;

• students wanted to do the workshop with others with whom they had a greater

affinity.

• keep workshop sessions often - school routine at times requires students to travel

to participate in sporting events. In addition, there was an occasion when the

computer lab key wasn't found by school professionals. The lack of the sessions'

frequency may harm students who already have difficulty assimilating the

algorithms concepts.

 206 REnCiMa, v. 10, n.4, p. 192-211, 2019

• Maintaining Quality of Audio Recording - The laboratory provided by one of the

schools was sometimes shared with other teachers and students who performed

other activities. The other school's laboratory was next to kindergarten classes.

The noise caused by such situations has hampered the quality of audio recording

sometimes.

Results

This section presents the results achieved by the analysis of the collected data.

Decomposition Skills

Decomposition was a step that required more teacher mentoring than expected. At

first, the students associated the game development only with the visual elements of it. They

didn't observe the dynamics of the game involving, for example, responses to user actions.

And experience has shown that there is the possibility of teacher solving problems through

storytelling approaches or constructing narratives through visual schemas. Through this, the

teacher can intervene by asking students to "take a narrative of the game to identify the

dynamics of the game and turn them into tasks. These techniques will be incorporated into

the strategy proposed in future experiments. The result of task decomposition is represented

in the kanban produced. In general, the decomposition took place satisfactorily, carrying out

the implementation tasks. There were few sessions where kanban no longer included a

necessary sub-task.

Problem Solving Interactions

From the students' moves, according to Goos and Galbraith (1996) approach, a table

was arranged highlighting proposals for new procedures and information (NI/NP's). In this

way, the table was composed of 6 columns: (1) move identification - composed by the initial

student 's name plus the sequential number; (2) NI/NP - if the Move is an NI/NP, mark a V

if it is useful for solution and X otherwise; (3) Episode type - represents facets of problem

solving; (4) context - description of the learner's act; (5) Response to NI/NP - description of

the answers given by the other members in the case of an NI/NP; and (6) Adequate

response - mark a V if the answer is suitable for solution and X otherwise. In order to

visualize the interactions, we set up a graph from this table. The vertices represent the

moves or NI/NPs. When a student proposes an NI/NP, an edge is directed from the vertice

of its move to the NI/NP vertice. The NI/NP vertice is labeled with an X or V depending on

its utility for the solution. Responses are represented by directed edges from the NI/NP for

the responses moves. Edges were labeled according to students acts.

Graph analysis showed that when there is symmetry, everyone contributes in a more

harmonious way to the group. When there isn't, the trend is that there are more contributions

with new ideas and procedures, without any discussion around it, coming from the student

who has greater ease. However, peer exchange allows even students, who presented

difficulties to participate in the solution by implementing the suggested procedures. Although

the implementation is often done passively, the student still directly participates in the

 207 REnCiMa, v. 10, n.4, p. 192-211, 2019

solution. Figure 4 illustrates two parts of interaction graphs extracted from different sessions.

In graph A there is the relationship of symmetry between Maria (M) and Kamila (K), graph

(B) illustrates the activity sequence in another session but does not occur the symmetry

relationship between Maria and Humberto (H). This situation may have occurred due to

several factors, but it may be related to the fact that Humberto has access to computer at

home while Maria and Kamila don’t.

Figure 4: Part of the interaction graph developed by group 2, in the first session
(a) and second session (b).

Student's Solving Strategy

From the student moves analysis, we observed many occurrences of verification

episodes that were presented as tests. This happened when new procedures were included

or even to experience aesthetic elements of the game. Thus, there is evidence that students

have demonstrated a problem-solving approach similar to the Test-Driven Development

(TDD) technique. According to Teles (2004), it is a technique in which software developers

conduct tests to obtain feedback quickly on what they are doing. Obviously, learners were

expected to take tests in stage 5. However, the students took the tests "voluntarily" to

examine each new procedure, without the need for teacher interventions. It's possible that

students have adopted this method because of the main activity division into sub-tasks

performed in step (2) and the use of game elements that are easily verifiable through

animations and interactions.

Mobilized Algorithm Design Skills

Sequential Flow and User Event Concepts Mobilization: It is a concept that represents

a starting point for the algorithm design. All groups were able to use these concepts

correctly. However, students sometimes forgot the event responsible for starting the game.

Conditional Mobilization: Groups 1 and 3 were able to properly mobilize this concept

during the first session involving programming to produce a racing game. Figure 5(a)

illustrates a racing game algorithm. Group 2 was only able to mobilize this concept in the

second session. This may have been due to the fact that the students in the first session did

 208 REnCiMa, v. 10, n.4, p. 192-211, 2019

not have access to a computer at home. Group 4, during the first session defined that it

would make a "shooting game" - the racing game could give an opportunity to use the

concept in a simpler way. In Figure 5 (b), the students chose to use the "if-else" structure

and the "else" was unnecessary. This team also used the "if" structure unnecessarily inside

a loop, which, in addition to consuming processing time, a "bug" in the game happened. In

addition, there was a situation where the team’ students were unable to use such structure

correctly. Group 2 also mobilized the "if" structure to develop the "shooting game". To make

the player's character disappear when captured, an unnecessary "else" command was used,

but the group also used the "if" structure correctly to make a character disappear when being

hit - Figure 5(c).

 Repetition Concept Mobilization: It was expected that the repetition command would

be used at least in two situations. Both group 2 and 4 used the repetition correctly to make

the rival character walk the stage. Group 2 missed this command in one of the citations.

Group 4 used a second repeat structure partially correctly - in account of the misuse of a

loop's "if" command (as mentioned earlier).

Figure 5: Some algorithms designed by students during the workshop.

 The following faults in the requirements, bugs and unnecessary steps in the

algorithm were identified:

• Groups 1, 2 and 3 who proposed the simple racing game met all the

requirements and were clear of failures.

• The shooting game proposed by group 2 failed to meet 1 requirement. There

were 3 "bugs" in the game and 2 unnecessary steps.

• The shooting game proposed by group 3 left no longer fulfill 1 requirement. There

were 3 "bugs" in the game and only 1 unnecessary step.

Reflection on Social Skills

The reflection meeting (step 6) demonstrated to be very useful in dealing with social

aspects. Some examples recorded during the meetings are described subsequently. Group

4 during the second session reported that girls needed to stop laughing (making fun of each

other) during the development period. This attitude could take the focus off programming

from those who were attentive. In the following session, students found that "jokes" occurred

 209 REnCiMa, v. 10, n.4, p. 192-211, 2019

less frequently. Another situation was reflected in group 1 meeting minutes. During the first

session, there was a moment that the pilot was having problems, so one of the students

interfered assuming the computer (for a short time) to perform a task. In the reflection

meeting, they recognized that they needed to improve the coexistence in the group.

Playful Games

During the workshop application, we could observe that the students showed

themselves interested. At many times during the tests, the learners demonstrated

expressions that indicated that they were having fun (with laughs for example). In the

reflection meeting's minutes, the students reported constantly that the games were getting

fun.

Conclusion

This article presented a cooperative learning strategy with the aim of promoting

Computational Thinking skills in students through digital games development. The results

showed that the strategy is able to mobilize social skills and problem-solving strategies

related to CT in a motivating way. The analysis of the interactions among the group members

showed that, when there is symmetry between the participants, there is higher participation

of the group members in the problem-solving process. On the other hand, we faced several

situations where symmetry can't be maintained. Even in these cases, peer programming

allowed learners who were contributing less to participate in the solution once they were

being guided by another student. Souza, Marczak and Prikladnicki (2011) explain that in

software development, pair programming usually consists of the most experienced

programmer assisting the less experienced programmer who will be coding. The analysis of

the episodes showed that the students were adopting, together, TDD techniques. Teles

(2004) reports that when developers leave the tests to the end, the project ends up being

harmed. In addition, the author reports that developers can learn more by this approach.

Results also showed that students mobilized decomposition skills and algorithm design

concepts. Although the artifacts developed presented some mistakes, each of the flow

control structures proposed in the workshop was used at least once in a completely correct

manner. The reflection meeting showed that students are able to think about their group

interactions behavior.

Finally, the strategy was motivating to show evidence that the students were having

fun and thinking that the games were getting funny. We believe this is a considerable aspect

since it is important for the students to see meaning in what they are doing and learning.

References

AQUINO FILHO, G. F.; AMARAL, L. H.; SCHIMIGUEL, J. Ambientes colaborativos para
ensino de eletrônica e lógica de programação. Revista de Ensino de Ciências e
Matemática (REnCiMa) , v. 7, p. 31-39, 2016.

 210 REnCiMa, v. 10, n.4, p. 192-211, 2019

BARCELOS, T. S. Relações entre o pensamento computacional e a matemática em
atividades didáticas de construção de jogos digitais. 2014. 276 p. Tese (Doutorado em
Ensino de Ciências e Matemática) - Universidade Cruzeiro do Sul. São Paulo. 2014.

BARR, Valerie; STEPHENSON, Chris. Bringing computational thinking to K-12: what is
Involved and what is the role of the computer science education community?. Acm Inroads,
v. 2, n. 1, p. 48-54, 2011.

BRACKMANN, Christian Puhlmann. Desenvolvimento do pensamento computacional
através de atividades desplugadas na educação básica. 2017. 226 p. Tese (Doutorado
em Informática na Educação) - Universidade Federal do Rio Grande do Sul. Porto Alegre.
2017.

DILLENBOURG P. What do you Mean by Collaborative Learning? In: DILLENBOURG P.
Collaborative-learning: Cognitive and Computational Approaches. Oxford: Elsevier, 1999.
cap.1, p. 1-19.

FEIJÓ, B.; SILVA, F. S. C. da; CLUA, E. Introdução à Ciência da Computação com
Jogos: aprendendo a programar com entretenimento. Rio de Janeiro: Elsevier, 2010. 263p.

FRONZA, I.; IOINI, N.; CORRAL, L. Teaching Computational Thinking Using Agile Software
Engineering Methods: A Framework for Middle Schools. ACM Transactions on Computing
Education (TOCE), v. 17(4), p.1-28, 2017.

GOOS, M.; GALBRAITH, P. Do it this way! Metacognitive strategies in collaborative
mathematical problem solving. Educational Studies in Mathematics v. 30, p. 229–260,
1996.

JESUS, Â. M.; SILVEIRA, I. F. A Collaborative Game-Based Learning Framework to
Improve Computational Thinking Skills. Transactions on Edutainment. 2019. In press.

JOHNSON D. W.; JOHNSON, R. T.; HOLUBEE, E. J.; ROY P. Why Cooperative Learning
is Important. In: JOHNSON et al. Circles of Learning: Cooperation in the Classroom. S.
l.: Eric, 1984. cap.1 p. 7-17.

LEE, I. et al. Computational thinking for youth in practice. ACM Inroads, v. 2, n. 1, p. 32-37,
fev. 2011.

MATTHEWS, R.S.; COOPER, J.L.; DAVIDSON, N.; HAWKES, P. Building Bridges between
Cooperative and Collaborative Learning. Change, S. l., v. 27, p. 34-40, 1995.

 MIT MEDIA LAB. Scratch: create, imagine, share. Available in <https://scratch.mit.edu/>
Accessed on: 02 Jan. 2019.

MOREIRA, M. A. Aprendizagem Significativa: um conceito subjacente (Meaningful learning:
an underlying concept). Aprendizagem Significativa em Revista/Meaningful Learning
Review, Porto Alegre, v.1, n.3, p. 25-46, 2011.

PANITIZ, T. Collaborative Versus Cooperative Learning: a comparison of the two concepts
which help us understand the underlying nature of interactive learning. 1999. 13p.
Educational Resources Information Center ERIC. Available in
<https://files.eric.ed.gov/fulltext/ED448443.pdf> Access on: April 2, 2018.

PAPERT, Seymour. A Máquina das Crianças: Repensando a Escola na Era da
Informática. Porto Alegre: Artmed Editora, 1993. p. 220.

PAPERT, S.; SOLOMON, C. Twenty things to to with a Computer. Educational Technology
Magazine, 1972. Available in: <http://www.stager.org/articles/twentythings.pdf>. Accessed
on: 05 Jan. 2019.

 211 REnCiMa, v. 10, n.4, p. 192-211, 2019

RAU, W.; HEYL, B. S. Humanizing the College Classroom: Collaborative Learning and
Social Organization Among Students. Teaching Sociology, S. l. v. 18, p. 141-155, 1990.

SOUZA, C. R. B. de; MARCZAK, S.; PRIKLADNICKI, R. Desenvolvimento colaborativo de
software. In: PIMENTAL, M. and FUKS, H. (Orgs.). Sistemas Colaborativos. 1.ed. Rio de
Janeiro: Elsevier, 2011. cap.8, p.122-134.

TABEL, O.; JENSEN, J.; DYBDAL, M.; BJØRN, P. Coding as a Social and Tangible Activity.
Interactions, v.24(6), p.70-73, 2017.

TELES, V. M. Extreme Programming: Aprenda como encantar seus usuários
desenvolvendo software com agilidade e alta qualidade. São Paulo: Novatec Editora, 2004.

TORRES, P. L.; IRALA, Esrom Adriano Freitas. Aprendizagem Colaborativa: Teoria e
Prática. In: TORRES, Patricia Lupion. (Org.). Complexidade: Redes e Conexões na
Produção do Conhecimento. 1ªed. Curitiba: SENARPR, 2014, v. 1, p. 61-93.

WEBBER, C. G.; VIEIRA, M. B. Tecnologias digitais na educação: colaboração e
criatividade em sala de aula. Revista de Ensino de Ciências e Matemática (REnCiMa).
v. 1, n. 2, p. 166-177, 2010.

WING, J. M. Computational thinking. Communications of the ACM, v. 49, n. 3, p. 33-35,

mar. 2006.

