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Abstract 

In the context of early algebra research and as part of a classroom teaching 

experiment (CTE), we investigated fourth grade (9- to 10-year-old) students’ 

justifications of how they performed tasks involving the functional relationship y = 2x. 

We related their written justifications (part of the task) to the task characteristics, which 

included various semiotic systems (verbal, numerical and alphanumeric, among others) 

and the demand of different type of justifications. The role of classroom discussion in 

helping express the functional relationship orally in more sophisticated terms was also 

investigated. The findings showed that students’ written justifications changed with the 

semiotic system involved in the task. Oral discussion helped students generalize in more 

sophisticated terms than in their written justifications, in which they omitted information 

or used less precise language. 
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1. Introduction 

One of goals of early algebra research is to algebrify elementary mathematics 

considering several dimensions of algebra: (a) generalized arithmetic; (b) the study of 

patterns; (c) equivalence, expressions, equations and inequations; and (d) the study of 

functions (Molina & Mason, 2009; Blanton et al., 2011). In addition, it includes processes 

that are transversal to those contents: generalization, representation, justification and 

reasoning about generalizations.  

The object of this study is the process of justification in the context of early 

algebra tasks involving functional relationships. We focused on functional thinking, 

understood to be generalizing, representing and justifying relationships between 

covarying quantities, as well as the use of representation to predict and understand how 

variables behave (Blanton & Kaput, 2011). This type of thinking allows integrating 

algebra in the elementary mathematics curricula without adding any new content, just 

interpreting arithmetic operations as functions. It is also a useful resource in problem 

solving; it allows to deal with functions, in students’ daily contexts, as a variation (e.g., 

Carraher & Schliemann, 2007, 2015).  

Justification, a skill developed gradually (Stephens et al., 2017), is a way of 

determining and explaining the truth of a conjecture or assertion. We are interested in its 

study because encouraging students to justify their thinking helps them understand and 

actively participate in the construction of mathematical concepts and processes (Chua, 

2016).  

Justification is an act of communication. Students’ mathematical knowledge can 

be analyzed from what they say or their use of other signs (Morgan et al., 2014). 

Furthering mathematical communication helps students express themselves more clearly. 

It also helps teachers understand what students are thinking and make better informed 

pedagogical decisions (Ingram et al.,2019). As acknowledged in curricular guidelines, 

Spanish elementary school students are expected to “verbally express and reason the 

process followed in solving a problem […]; formulate conjectures and find arguments to 

validate or refute them” (Ministerio de Educación, Cultura y Deporte, 2014, p.19388).  

In the context of a CTE designed to explore and foster functional thinking in 

elementary school students, we sought to determine how justification may be conditioned 



by the characteristics of the tasks proposed and describe the development of students’ 

ability to justify. We delimited the research problem in terms of the following questions: 

What are the characteristic features of written justifications in 

functional tasks involving different semiotic systems and demanding 

various types of justifications in generalization? 

How might oral justification arising in group discussion promote 

further more sophisticated expression of inter-variable relationships? 

 

Considering that the type of arguments wielded depends on students’ skills and 

the nature of the task (Chua, 2016), we include in the tasks the demand of two type of 

justifications: elaboration and validation. At the same time, we consider that semiotic 

systems include conventional representations systems but also non-conventional systems 

such as gestures, rhythm and natural language. By using them students give meanings to 

mathematical objects (Radford, 2002). A higher sophistication in the expression is related 

to the idea of semiotic contraction, i.e., the reorganization of semiotic resources produced 

as a result of students’ higher awareness of mathematics meanings and interpretations 

(Radford & Sabena, 2015). The semiotic contraction consists of making a choice between 

what counts as relevant and irrelevant (Radford, 2018) 

The interest of studying justification and the expression of generalization 

considering different semiotic systems is manifested by Kaput (2009) as an open line of 

research: “Given the essential role of argument and expression in generalization, and the 

fact that younger learners need to use natural language and other naturally occurring 

forms of expression, my sense is that we have much to learn about generalization and 

hence the development of algebraic thinking, from studies of gesture and talk—including 

intonation (p.213)”. In that paper the author claims that theoretical constructions such as 

that of Radford (2009) are needed to get a deeper understanding of how speech, gesture, 

and the many different systems of signs interact, particularly if we adopt his perspective 

that knowledge objectification is almost always, particularly in education, a multimodal, 

semiotically mediated phenomenon. Considering this concern, in this study we aim to 

contribute to widening the study of functional thinking by adopting a multimodal view of 

thinking. We consider thinking not just as a mental activity but as a process mediated and 

evidenced by language, gestures, rhythm and all the resources used to interact with the 

environment. We understand that “the source of abstract mathematical thinking is to be 



found in the sophisticated linkage of language and the perceptual, auditory, tactile and 

kinesthetic sensorial channels.” (Radford, 2009, p. 124).  

Earlier studies have broached justification from different angles. Some sought 

to characterize student’s arguments and determine whether they accepted a mathematical 

proof as valid (Stylianides, 2015), while others used the Toulmin model to characterize 

such arguments (Krummheuer, 2013), focused on teachers’ questions and actions that 

could further explanation or argument (Ingram et al., 2019) or established levels in 

students’ justifications (e.g., Carpenter et al., 2003; Knuth et al., 2009; Lannin, 2005). 

Some of the open lines of research mentioned in earlier papers included exploring the 

types of tasks that encourage students to analyze their classmates’ generalizations and 

justifications (Lannin, 2005) and identifying the type of curricular and educational 

foundations on which to build sophisticated justification (Stephens et al., 2017). 

We aim to characterize students’ justifications qualitatively, without judging 

whether they constituted formal mathematical proofs. We deemed justification to be 

sophisticated in functional contexts when it was precise, explicitly mentioned the 

variables involved, expressed the relationship between variables bearing in mind a 

number of mathematical elements and referred to indeterminate quantities. The 

acknowledged importance of justification in the process of learning mathematics justify 

our interest in deepening our understanding on how students justify their answers and 

how this process may be conditioned and mediated by various tasks characteristics. In 

this case the characteristics consider are the type of justifications demanded by the task 

and the semiotic systems used in the task. Part of the originality of this study is to analyze 

the students' answers considering these two components of the tasks. We discuss the 

differences identified between written and oral justification in terms of the idea of 

semiotic contraction providing new insight into the development of students’ awareness 

of the functional elements involved in the early algebra tasks proposed as well as the role 

of the linguistic exchange provoked by the task. 

2. Theory and Background 

2.1. Justification. In this study, justification is defined as a social process in 

which mathematical knowledge is explained, verified and systematized based on ideas, 

definitions and mathematical properties which, like the representations used to express 

the concept, are within the conceptual reach of the classroom community. Its role depends 



on the community at issue (Staples et al., 2012). As an educational task, justification may 

be a means to learn mathematics and solve mathematical problems, enabling students to 

heighten their understanding of mathematics and improve their mathematical skills. 

Justification and argumentation have been defined in a variety of ways in 

mathematics education literature. According to Chua (2016), justification is a way to 

determine and explain the truth of a conjecture or assertion. Its roles include determining 

the truth to dispel one’s own doubts or persuading others that a conjecture is true. 

Similarly, Ayalon and Hershkowitz (2018) and Simon and Blume (1996) stressed that it 

is both a verbal and a social activity. They positioned justification in a social space as part 

of classroom discourse for contrasting ideas, reflecting and reasoning. Therefore, it is 

based on knowledge shared by the community. 

Justification tasks may be classified by their nature and purpose or by the 

element to be furnished in the justification (Chua, 2016). For example, in justification 

task of elaboration where the purpose is to explain how, students are expected to include 

a description of the method or strategy used to find the result. In task of validation the 

aim is to explain why, with students expected to give reasons or evidence to support or 

refute a mathematical idea.  

2.2. Earlier Research on Justification. The different levels of student 

justification established in the literature include: non-justification; reference to an 

authority; empirical evidence; generic example; general argument not constituting an 

acceptable proof; and deductive justification.  

Empirical evidence-mediated justifications are inductive or perceptual, i.e., 

based on examples rather than on a general relationship (Carpenter et al., 2003). A generic 

example is a deductive justification expressed in connection with a particular instance 

(Lannin, 2005). A general argument not constituting an acceptable proof is one that 

includes non-feasible or mathematically incorrect arguments or an incomplete argument 

which, if completed, would be acceptable (Knuth et al., 2009). 

Blanton (2017) noted that in studies conducted in a functional context, 

elementary school students often resort to empirical cases when justifying their answers. 

Similarly, Lannin (2005) concluded that sixth-grade students, when performing 

generalization tasks in numerical situations, tended to use empirical justification or 

generic examples. In the latter case generality was identified by the educator rather than 



the students. Carpenter et al. (2003) stressed that to help students’ reason about the 

context or structure of a problem guiding them toward general arguments is more 

important than testing specific cases. In a study with sixth- to eighth-grade students, 

Knuth et al. (2009) observed that example-based justifications prevailed and justification 

grew more sophisticated with age. Although lacking mathematical rigor, students could 

prove the general case, perhaps because those students had participated previously in 

activities that favored justification. Establishing general arguments was the task that 

posed greatest difficulty.  

2.3. Approach of the Semiotic and Social Perspective of Algebraic Thinking. 

Algebraic thinking can be defined from multiple perspectives (Carraher & Schliemann, 

2018; Kieran, 2014). In this study we assume algebra refers to indeterminate quantities 

(unknowns, variable, parameters or generalized numbers) which are used in an analytical 

manner. It involves reasoning about generality, recognizing the underlying algebraic 

structure in a situation and relations between quantities. Algebra as a language for 

expressing and manipulating generality (Mason et al., 1985) resort to idiosyncratic or 

specific modes of representation culturally evolved (Radford, 2018).  

Concerning the modes of representation in the study of algebraic thinking, we 

consider thinking is produced in and through a sophisticated semiotic coordination of 

talk, body, gestures, symbols and tools. It is not just abstract and intangible ideas situated 

in the mind (Radford, 2009). Signs are the keys to understanding and interpreting how 

people learn and understand. Signs are psychological tools that enable subjects to reflect 

and plan actions and act as cultural mediators (Radford & Sabena, 2015). Invoking 

Vygostkian premises, we deemed signs to be included in children’s activity and alter the 

way they understand the world and themselves. As that transformation depends on the 

collective social meaning and use of signs, it is related to their historical and cultural role 

(Presmeg et al., 2016). 

The evolution of the meanings of signs is closely related to social interaction 

because it is the way in which ideas are symbolized and mathematical meanings change 

with communication and interaction with others. The meaning of signs arises and is 

materialized and transformed during a singular communicative situation, thanks to the 

linguistic exchange stablished between the users. In other words, they are developed 

according to the demands of communication and social interaction (Wertsch, 1985/1995). 

To understand the meaning of signs, we cannot reduce its interpretation to just what they 



represent but rather we must understand the type of activity that they allow (Vergel, 

2014). 

Generalization is a central aspect in algebraic thinking (Kaput, 2008; Mason, 

1996) which has been described in several ways in the literature. This activity can be 

understood as a process (generalizing) as well as a product (generalization) (Ellis, 2007). 

The process implies: (a) to identify elements common to all cases, (b) to extend reasoning 

further than the range in which was originated, and (c) to derive more wider results than 

the particular cases and to provide a direct expression that allows to obtain any term (Ellis, 

2007; Strachota et al., 2018). In addition, we think of generalization is constituted by 

layers which acquire higher sophistication in relation to the semiotic systems used to 

reason and express generality (Radford, 2010). In general, we share the view that 

algebraic thinking may be cultivated before algebraic notation is introduced (Carraher & 

Schliemann, 2018; Radford, 2018).  

2.4. Functional Thinking. Research on functional thinking studies functions 

and families of functions in real-life situations (Cañadas & Molina, 2016). In the context 

of classroom algebra, a function is a mathematical statement that describes how two 

quantities covary. It comprises a domain, a target set (codomain or range if constrained 

to the values adopted by the function) and a rule whereby each element in the domain is 

paired to a single element in the codomain. The values of the independent variable lie in 

the domain and those of the dependent variable in the codomain. The definition of which 

variable is dependent and which independent is conditioned by how the data are presented 

in the tasks proposed (Blanton et al., 2011).  

In this study we propose problems involving linear functions of the forms y = ax 

or y = ax + b, where a, x and b belong to the set of natural numbers. In this context, we 

consider two of the ways in which the functional relationship may be expressed: directly 

(how the dependent variable relates to the independent variable) or inversely (how the 

independent variable relates to the dependent variable).  

Functional thinking is present when students establish covariation or 

correspondence relationships between the variables involved in problems (Smith, 2008). 

While recurrence relationships may also be established, they are only considered to be 

functional when they entail the analysis of both variables by establishing a relationship 

between them. 



Functions may be represented in many ways and each representation merely 

expresses some of its properties. As the starting point for understanding functions, verbal 

language can be used to formulate a (generally qualitative) description. Tabular 

representations organize the pairs of elements related by the function and help identify 

and describe the changes between variables (Blanton, 2008). Symbolic representations 

afford a general qualitative and quantitative view of the function, from which to abstractly 

analyze its behavior. The depth of students' understanding of functions depends on how 

they develop the skill to use a variety of representations and understand their inter-

connections (Blanton, 2008). 

3. Method 

3.1. Participants. This qualitative, exploratory and descriptive study consisted 

in a CTE (Cobb & Gravemeijer, 2008) with a group of 24 second-grade (7- to 8-year-old) 

and 25 fourth-grade (9- to 10-year-old) students. This paper discusses only the data for 

the fourth graders as second graders furnished very few and very vague explanations. 

Another reason for choosing the older group of students was that they had studied 

addition, subtraction and the basics of multiplication and division and worked with 

numbers up to one million. Prior to the working sessions, the students had received no 

instruction on generalization or expressing algebraic ideas. 

They were enrolled in a charter school in southern Spain in a very low-income 

level neighborhood populated by families at risk of social exclusion. Many of the students 

were members of socially disadvantaged families of either Romani or Spanish-speaking 

immigrant origin. We chose to work at such school due to their availability and good 

disposition to participate.  

Our aim is to describe student activity by communicating their ideas and to 

understand the development of algebraic thinking in a situated way. We assume that their 

circumstances may involve harder conditions for successful learning. We share the idea 

that educational phenomena are context sensitive, therefore, we aim that these real 

references guide future action through reflection (Radford & Sabena, 2015) without 

pretending to be directly generalizable to other contexts.  

3.2. Instruction Sequence. The design for the fourth graders included an 

individual questionnaire, two (one initial, one final) individual semi-structured interviews 



and four 60-minute classroom sessions. The school was visited once a month for 

6 months. 

Students’ normal classroom arrangement in groups of three or four was retained 

for the working sessions. One researcher played the part of teacher-researcher to monitor 

the variables defined in the experimental design (Kelly & Lesh, 2000). Her role consisted 

primarily in encouraging students to participate actively and interact with one another and 

to clarify their doubts around the tasks. Other team members acted as observers or video-

recorded the sessions. 

The sessions were divided into three parts (see Figure 4-8). At the beginning of 

each the teacher-researcher introduced or repeated the general situation that constituted 

the context for the tasks at hand and ensured that all the students understood them. In the 

classroom discussions the students were allowed to express their ideas, ask classmates for 

explanations about theirs or make suggestions to improve the proposed answer. The order 

in which the parts were conducted was not strictly linear: after a classroom discussion the 

students could return to their working groups or work on a new task. Whole group 

discussions and students’ interaction were promoted due to the importance of social 

interaction in the development of algebraic thinking.  

Figure 4-8. 

Session parts 

 

Contexts and vocabulary were chosen to be familiar to participants. The analysis 

conducted of each session served as a basis for decisions affecting the ones that followed. 

Because student communication and activity are closely related to the demands of the 

task, we include different types of justifications, representations, contexts, and functions 

in the task design. Task characteristics are listed in Table 4-9.  

Introduction of general 

situation (whole class) 

Work performed individually 

or in small groups 

Classroom discussion of answers (whole class) 



Table 4-9. 

Worksheet tasks 

Task characteristic Session 1 Session 

2 

Session 3 Session 4 

Context Amusement park Birthday: tables and 

boxes 

Function y = 2x + 1 y = x + 3 y = 2x or y = x + x 

Type of justification     

- Elaboration ü ü ü  

- Validation    ü 

Semiotic system     

- Natural language ü ü ü ü 

- Figures or drawings  ü   

- Numerical: numbers only ü ü ü ü 

- Numerical: Arithmetic 

expressions 

   ü 

- Tabular   ü ü 

- Alphanumeric language     ü 

 

In the tasks involving the function 2x+1 the students encountered problems due 

to lack of arithmetic knowledge and numerical understanding. As their focus on the 

operation per se was an obstacle to generalizing and justifying the inter-variable 

relationship, we designed the following sessions around simpler functions.  

The worksheet semiotic systems grew gradually more complex. Sessions 3 and 

4 involved the same context and functions but different semiotic systems. 

3.3. Data Collection. Data was collected from three sources: worksheets; video 

recordings with a fixed camera located at the rear of the classroom; and mobile camera 

video recordings of students as they worked. 

This paper discusses the tasks proposed in the last two sessions, described in 

detail below. We focused on them because the function involved accommodated both 

multiplication and addition and both the semiotic system and the type of justification were 



broader than in the earlier sessions. The general situation for the tasks performed in the 

two sessions is shown in Figure 4-9. 

Figure 4-9. 

General situation for sessions 3 and 4 

 

As the numbers of tables and boxes were represented by numbers only in the 

third session, the functional relationship was implicit, for the objective was for the 

students to discover it. In the fourth session the functional relationship was sometimes 

expressed explicitly. Although each task was associated with just one type of justification, 

in the classroom discussions both could be observed, depending on each student’s 

intention when expressing their opinion.  

3.3.1. Description of Session 3. The teacher-researcher introduced the situation 

with pictures of the tables and boxes, which she pasted on the blackboard until achieving 

the representation shown as shown in Figure 4-9. In the four specific cases initially 

described the students identified common elements, established the relationship between 

the number of tables and number of boxes and tabled the data. They then broke into small 

groups to perform the tasks shown in Table 4-10. The session ended with a classroom 

discussion of the answers. 

  



Table 4-10.  

Tasks on the session 3 worksheet 

Task Case type Semiotic 

system  

Type of 

justification 

Fill in the blank cells in the table with the 

number of boxes, given the number of 

tables, or vice-versa. Justify the answer. 

(Part of the table is reproduced below.) 

 

Non-

consecutive 

specific 

cases 

Numbers 

only 

Tabular 

Elaboration 

Answer open questions to generalize the 

relationship between boxes and tables. 

• How do you know how many tables 

there are when you know the number of 

boxes? 

• How do you know how many boxes 

there are when you know the number of 

tables? 

General 

case 

Natural 

language 

 

Elaboration 

 

3.3.2. Description of Session 4. The fourth session began with a review of the 

situation introduced in the third and the analysis of a few examples to ensure students 

remembered the relationship between the numbers of boxes and tables. They then solved 

the tasks listed in Table 4-11, first in writing and then in a classroom discussion in which 

each student explained their answer while a classmate stated whether they agreed or 

otherwise. The session ended with a classroom discussion of the answers to tasks 1 and 

3. 



Table 4-11. 

Tasks on the session 4 worksheet 

Task Case type Semiotic 

systems  

Type of 

justification 

Task 1 

Analyze specific cases in a table and 

determine whether the relationships are 

true or false. (Part of the table is 

reproduced below.) 

 

Non-

consecutive 

specific 

cases 

Numbers only 

Arithmetic 

expressions 

Natural 

language 

Tabular 

Validation 

 

Task 2 

Explain in writing how to find the 

number of boxes: 

• When there are 1000 tables 

• When there are Q tables 

Specific 

case 

General 

case 

Natural 

language 

Alphanumeric 

language 

Validation 

 

Task 3 

Analyze statements that explain the 

number of tables and boxes and justify 

whether they are true or false. Two of the 

statements were: 

• When Isabel has 11 tables she needs 

21 boxes. 

• When Isabel has Z tables she needs 

2xZ boxes.  

Non-

consecutive 

specific 

cases 

General 

cases 

Natural 

language 

Numbers only 

Arithmetic 

expressions 

Alphanumeric 

language 

Validation 

 

 

3.4. Data Analysis. We analyze how students communicate written and oral 

justifications. We describe their ways of expressing functional relationships and relate 

them to the demands of the tasks (determined by the type of justification and the way of 

representing the variable in the task). We analyzed each explanation in terms of whether 

it was correct; whether it involved the direct or inverse relationship; the mathematical 



elements used (counting, addition, multiplication, among others); how the variables were 

referred to; and whether the expressions were interpreted operationally or structurally. In 

operational interpretation, expressions are seen in terms of processes for which a result 

must be found. In structural interpretation, expressions are processed as a single entity 

with no need for calculation. For instance, in the task illustrated in Figure 4-10, a student 

exhibiting structural interpretation would answer that the relationship is true because 

“5 + 5” is twice five and the number of boxes is twice the number of tables. An 

operational interpretation would contend that it is true because “5 + 5 = 10” and ten is 

twice five.  

Figure 4-10. 

Sample task, session 4 

 

We analyzed the classroom discussions on the grounds of the video recordings 

and respective transcriptions. We characterized students’ answers by degree of 

sophistication of the justifications, based on whether: they explicitly identified and 

mentioned the variables; explained the mathematical relationship between variables; and 

expressed themselves in indeterminate or general terms. Table 4-12 lists three examples 

in descending order of sophistication16. 

Table 4-12. 

Examples of characterization of answers 

Response Variables 

mentioned 

 Mathematical 

relationship 

Expression of 

indeterminacy 

S08: I said six because if I have to 

take boxes to however many 

tables, I add two by two. 

Boxes 

Tables 

Adding two by 

two 

However many 

tables 

 
16  Students’ identities are coded as Si where i=1 … 25. T-R refers to the teacher-
researcher. 



Table 4-12. 

Examples of characterization of answers 

Response Variables 

mentioned 

 Mathematical 

relationship 

Expression of 

indeterminacy 

S03: Six times two, six, for six 

tables times two for two boxes, 

then six times two is twelve. 

Boxes  

Tables 

Six times two 

is twelve. 

Implicit 

S17: By adding. 2000 Implicit Adding Implicit 

4. Results 

4.1. Written Justifications. In the tasks involving elaboration justification 

students preferred to use natural language in brief and at times imprecise answers. Most 

only mentioned the operation used or whether the relationship was twice or half. The 

variables were not mentioned.  

In the numerical cases, some students’ justifications invoked the direct 

relationship, even to explain how to find the number of tables. Their replies included 

“because I added”, “I multiplied”, “because it’s always twice” or reproduced the 

multiplication. Figure 4-11 shows S09’s worksheet, by way of example.  

Figure 4-11. 

S09’s answer 

 

Other students justified the direct and inverse relationships differently, although 

imprecisely. For the number of boxes, they replied “multiply”, “multiply times two”, 

“add” or “find twice” and for the number of tables “subtract twice”. Justifying the inverse 

relationship via subtraction might suggest that students understood adding and 



subtracting but not multiplying and dividing as inverse operations. They might have also 

related multiplying times two with adding the same number twice. 

Some students also used counting or graphic representations to justify their 

answers. For instance, when asked to find the number of tables for 44 boxes, S07 replied 

“because I drew the boxes”, referring to Figure 4-12. 

Figure 4-12. 

S07’s drawing, session 3 

 

S08 explained how she counted: “because I put two on one finger and I added 

two by two”. She wrote a list in which she established the correspondence between the 

numbers of tables and the number of boxes (see Figure 4-13). She correctly answered the 

question involving the inverse relationship, although her justification refers to the direct 

relationship: “because I found twice [the number]”. When justifying the inverse 

relationship (as he was being video recorded), S13 wrote “double 44” and immediately set 

out to write the sequence two-by-two (see Figure 4-14). When he reached 44, he counted 

the number of times he counted two-by-two to determine the number of tables. As they 

based their answers on the numerical sequence, S08 and S13 seem to have been thinking 

in terms of the direct relationship, which might explain why, when justifying the inverse 

relationship, they referred to finding twice rather than half the number. 

Figure 4-13. 
S08’s count 

Figure 4-14. 
S13’s count 

 
 



Most students referred only to the mathematical operation applied in their 

justifications of indeterminate quantities expressed in natural language. Some repeated 

the same justification for the inverse as for the direct relationship, so it is not clear whether 

they used the inverse relationship. Some students made general statements (e.g. S21 said 

he “multiplied times two” to get the number of boxes and for the number of tables 

“because in my head I thought it was half”). Others wrote down a number or example that 

expressed the number of tables and boxes.  

Validating justifications were observed to change with the semiotic system used 

in the task (see Table 4-13 and Table 4-14). Students were asked to justify the false 

answers only. 

Table 4-13. 

Answers to task 1, session 4 

Semiotic system Relationship proposed Student’s reply No reply 

Tables Boxes True False 

Numerical: numbers 2 2 1 17* 1 

4 8 17* 1 1 

Numerical: numbers 

and arithmetic 

expression 

4 x 2 4 - 17* 2 

13 – 2 13 2 15* 2 

 22 22 x 2 12* 5 2 

 5 5 + 5 10* 7 2 

 10 : 2 10 7* 7 5 

Natural language and 

numerical: numbers 

1000 Twice 

1000 

9* 8 2 

Half of 2 

million 

2 million 8* 7 4 

Note: * = correct answer. Six students were absent.  

In the third task (Table 4-14), the statements combined natural language and 

another semiotic system, except in statement 1 which most students mistakenly identified 

as true. They misconstrued the expression “twice as many” because they failed to heed 

the order of the variables.  



Table 4-14.  

Answers to task 3, session 4 

Semiotic system Relationship proposed Student’s reply No reply 

True False  

Natural language 1. There are twice as 

many tables as boxes. 

13 5* 1 

Natural language and 

numerical: numbers 

2. When Isabel has 11 

tables she needs 21 

boxes. 

1 17* 1 

 4. When Isabel has 12 

tables she needs 6 boxes. 

2 15* 2 

Natural language and 

numerical: numbers and 

arithmetic expression 

3. When Isabel has 4 

tables she needs 2x4 

boxes. 

16* 1 2 

Natural language and 

alphanumeric 

5. When Isabel has Z 

tables she needs 2xZ 

boxes. 

12* 4 2 

6. When Isabel has Z 

tables she needs Q boxes. 

7 8 4 

7. When Isabel has Z 

tables she needs Z+Z 

boxes. 

8* 7 4 

8. When Isabel has Z 

tables she needs Z boxes. 

3 12* 4 

Note: * = correct answer. Statement 6 could be true or false depending on the reasoning. 

In the items in Table 4-13 involving only numbers and statements 2 and 4 in 

Table 4-14, most of the justifications mentioned the name of one or both variables and 

corrected the number of boxes, denoting that the students applied the direct relationship. 

For instance, in task 1 S12 wrote: “it’s false because you can’t put 2 on two tables. It would 

be 1 in each 1; 4 is right”. As a rule, the calculation or verbalization of the relationship 

was implicit, except for S5 who justified the falsehood writing “2 x 2 = 4 tables”. 



When analyzing arithmetic expressions, some students exhibited an operational 

approach (e.g. see Figure 4-15). Their justifications showed that they solved the 

operations, applied the direct relationship and then determined whether the results agreed 

with the numbers proposed.  

Figure 4-15. 

S18’s justifications, session 4 

 

Other students rejected arithmetic expressions as the right answer, possibly 

because they believed only answers expressed as a number were valid (see Figure 4-16).  

Figure 4-16. 

S09’s justification in session 4 

 

In the statements involving alphanumeric language to refer to indeterminate 

quantities, some students assigned values to letters to justify their responses. Focusing on 

the shape of the letter they sought a number with a similar morphology (e.g. associating 

7 and 2 with Z) or they assigned them a value at random or the value beginning with the 

letter (e.g. zero to Z). After assigning a value, they applied the functional relationship and 

analyzed the statements. These students did not refer to indeterminate quantities or use 

the alphanumeric system, although they identified the relationship. Some answered 

statement 8 generally. S17, for instance, explaining it was false because it couldn’t be the 

same number, had no need to assign the letter any quantity.  

4.2. Oral Justifications in Classroom Discussions. Students expressed and 

communicated the relationship between tables and boxes better orally than in writing. 

Counting two-by-two was the first mathematic tool that enabled them to explain and 

because 2x4 isn’t 4, it’s 8 and 

here it doesn’t say 16 boxes 

because 13-2 isn’t 13. There 

are 22 boxes. 

T 

T 

False because it’s 10 

and the answer can’t 

give it to you. 
T 



verify their answers. Their justifications became more sophisticated as they referred to 

the relationships twice or half, with explicit mention of the variables involved. 

In session 3, students’ recognition of common elements in some of the cases 

described attested to progress toward generalization. In the classroom discussion during 

the introduction of the general situation around the number of tables for 16 boxes, the 

students either wielded no or only very general arguments to justify their answers. The 

discussion ended when S13 explained why there were eight tables, basing his justification 

on counting the number of tables on his fingers. The rest of the class agreed to the answer. 

Some of the students’ answers to other cases are set out in Table 4-15. 

Table 4-15. 

Answers in the initial discussion, session 3 

Question Reply Variables 

explicitly 

mentioned 

Mathematical 

relationship 

Expression of 

indeterminacy 

I have two 

tables: how 

many boxes 

do I need? 

S18: four, because I 

counted two, four. 

 Counting 2-

by-2 

 

I have 12 

boxes: how 

many tables 

are there? 

S08: I said six 

because if I have to 

take boxes to 

however many 

tables, I add two by 

two. 

Boxes 

Tables 

Adding 2-by-

2 

However many 

tables 

S23: there are six 

tables because 

twelve is twice six. 

Tables Twice  

S03: Six times two, 

six, for six tables 

times two for two 

boxes, then six 

times two is twelve. 

Tables 

Boxes 

Multiply 

times two 

 

 



In connection with generalization involving reasoning beyond the initial range 

of values, the justifications given in the first part of the session 3 reappeared in the post-

task classroom discussion. Some students answered and justified correctly while others 

answered correctly but used the mathematical relationship incorrectly in their arguments. 

For instance, the question: How many tables are there if we use two boxes? prompted the 

following dialog: 

S04:  One, because twice two is one. 

T-R:  Twice two is one? 

S03:  No 

T-R:  Why not, S03? 

S03:  She said twice two, which is four. 

T-R:  What’s is it then? 

S03:  It would be half, half of two. 

 

Expressing and discussing their justifications with classmates enabled students 

to identify their errors and clarified the use of mathematical concepts. The 

aforementioned situation recurred in the discussion around how to find the number of 

tables for 44 boxes. S08 said by multiplying and S21 corrected him saying: “You found 

half, S08. Not twice. Because if you’d multiplied you’d have 88”. S04 and S08 justified 

their answers by invoking multiplication, a relationship that had been the object of 

previous discussion. While they found the right number of tables, they alluded to the 

wrong mathematical concept when explaining their answers. 

When deriving broader results from specific cases at the end of session 3, the 

classroom discussion focused on examples involving indeterminate quantities. Here the 

teacher’s guidance was instrumental to improving justification and generalization. 

Students were also found to resort to empirical justifications as observed in other studies 

(e.g. Carpenter et al., 2003). Some of the teacher-researcher’s conversations are 

transcribed below. 

T-R:  When we calculate 500 million or any number of tables, what do we have 

to do to get the number of boxes? Can anyone explain that? I mean 

whichever of those numbers, whichever. What we would have to do to 

find the number of boxes when I’m given whatever number of tables? 

S02: Twice five hundred thousand. 



 

Although asked for an indeterminate number, S02 based her reply on a specific 

case. S14 answered the same way. 

S14:  What I did… since look if 40 is the number of boxes and twenty the 

number of tables, well what I did, I thought twenty plus twenty is 40 and 

I added.  

 

Those arguments failed to grasp and express indeterminacy. The students 

explained the mathematical relationship using specific cases. Whereas S02 made no 

explicit mention of the variables involved, S14 referred to the number of tables and boxes 

and the mathematical operation that linked the two. Therefore, although both arguments 

were based on empirical cases, S14’s was more sophisticated, given the explicit mention 

of the variables. 

In the following dialog, the teacher-researcher pursued greater precision in the 

S21’s arguments, affording him the opportunity to express himself more generally  

1. T-R: How can I find the number of tables if I know how many boxes I have? 

However many. 

2. S21: The number of boxes, say, for 500 million tables, no because there 

always have to be more boxes than tables. 

3. T-R: But if they tell you how many boxes, what do you do right away to 

know how many tables? 

4. S21:  Well… half. I’d think half the number of boxes. 

5. T-R:  When you know how many tables, what do you do to know how many 

boxes? 

6. S21: Multiplying. 

7. T-R: Times? 

8. S21:  Times two. 

9. T-R:  What would you multiply times two? 

10. S21: 500 million times two. 10 million. 

11. T-R: So, when you know how many tables, what do you do to know how 

many boxes? 

12. S21:  Multiply. 



13. T-R:  When you know how many tables, what do you do to know how many 

boxes? 

14. S21: Multiply times two because there are two boxes on each table. 

 

S21’s arguments referred to the variables indeterminately. Although in lines 2 

and 10 he tried to use a specific amount in his explanation, he did not pursue that line of 

thought but expressed the relationship between tables and boxes in two ways, first 

qualitatively (line 2) and then mentioning the operations that would yield any number of 

tables or any number of boxes (lines 4 and 14).  

In the following case the indeterminate quantity was represented as “Q”. The 

teacher-researcher said that “Q” represented a number they did not know, that could be 

any number. The students’ first reaction was to ask what that meant and related the letter 

with the numbers 15 (quince) or 40 (cuarenta, misspelled as quarenta). S01 contended: 

S01:  It depends, because if it’s the letter there aren’t any tables but if it’s the 

number there are. Then it’s double the number. 

T-R:  If it’s the letter there are no tables? 

S01:  If it’s not the letter, it’s 40 and there are 80 boxes. 

T-R:  And how do you know there are 80 boxes? 

S01: Because there’s twice the number [of tables]. 

 

In this case, by accepting that the letter could be a number, the student 

established the relationship indeterminately, although the variables were implicit in her 

explanation. Then she validated her answer empirically (assigning Q a value). 

5. Discussion 

As a general purpose, we sought to determine how justification may be 

conditioned by the characteristics of the tasks proposed and to describe the development 

of students’ ability to justify. In this regard, we observed that the functional relationship 

was express in a more sophisticated way when students interacted orally justifying their 

answers. Whereas students’ written justifications omitted information or were imprecise.  

This result might be explained by using Vygotsky's view of language and signs 

as instruments of mediation that are formed accordingly to the demands of 

communication (Vygotsky, 1934/1995 cited by Wertsch, 1985/1995, p. 97). Vygotsky’s 



ideas about kind of speech serve us to explain the differences detected between oral and 

written justifications. We relate written justifications with written monologue kind of 

speech and oral justifications with dialogue kind of speech. The distinction between these 

kinds of speech is not the amount of people involved but rather the degree of participation 

between them. According to Vygotsky monologue is a more complex, superior and 

historically later developed than dialogue. Following Yakubinskii’s work (1923 cited by 

Wertsch, 1985/1995), he considers dialogue as a natural form of interaction and 

monologue as an artificial late form. Written monologue is more complex due to the 

requisite of sharing a communicative context with the reader and fully explaining the 

linguistic formulations (Wertsch, 1985/1995, p. 102). Written justifications lacked 

additional questions about the comprehensibility of the message or about its adequacy to 

the demand of the task, so students wrote short messages without questioning whether 

someone else could understand them or whether they were answering the question. 

Instead, with classroom discussion students became actively involved in the process. 

Recognizing classmates’ ideas helped them to both adopt more sophisticated solving 

strategies and verbalize their explanations more precisely. The teacher’s intervention 

proved to be instrumental for introducing generalization in students’ justifications and 

motivate them to refer to indeterminate quantities. 

Our results might also be related to the design of the tasks because instances to 

discuss and reflect on the written productions were not included. Banes et al., (2017) 

present an experience with fifth-grade students where the importance of thinking about 

written explanations and motivating students to co-construct them stands out. They show 

that a collaborative writing lesson with an authentic audience sparks powerful class 

discussion and engages students in deciding what should be included in a mathematical 

explanation with different purposes and audiences. 

In our study, the results showed that students’ oral justifications helped them 

express the relationship between tables and boxes more precisely (second research 

question). Possibly including in the design a discussion about the understanding of their 

written justifications for the inter-variable relationship would have favored the 

indeterminacy present in these. That supports the importance of socializing answers in 

functional contexts to help contrast ideas, as observed in studies that analyzed patterns 

(e.g. Radford, 2018). 



Regarding our first research question, we found that the characteristics of 

students' written justifications depend on the type of justification and semiotic system 

involved in the task. Accordingly, students focused on one or another element of the 

function. Students used various semiotic systems to refer to variables and to reason and 

express the functional relationship, which did not always coincide with the ones used in 

the task. The students resorted to trusted entities to manipulate and give meaning and 

expression to the relationships identified.  

In elaborating justifications, similar written answers were given in tasks 

involving only numbers and those involving the general case expressed in natural 

language. Students tended to use natural language in brief and, at times, imprecise 

answers. Most only mentioned the operation used or the relationship in different ways 

(see Figure 4-17) and not the variables (boxes and tables). These results show that by 

asking students for an argument to explain how they obtained the answers, the 

communicative demand in this task led students to focus more on the functional rule than 

on the variables, leaving the latter implicit in the questions.  

Figure 4-17. 

Elements of functional thinking identified in elaborating justifications 

 

In comparison with elaboration justification, the communicative demand of 

validation justification was different, so students focused on other elements of the 



function. The elements explicit and implicit in their explanations differed (see Fig.11). 

False statements were explained differently depending on the semiotic system involved. 

More students mentioned the names of the variables in the statements involving numbers 

only. Mainly, students applied the direct relationship to check whether the relationship 

between the quantities is correct or not. They made the number of boxes to always be the 

double of the number of tables but did not make the functional relationship explicit in 

their justifications (see Figure 4-18). Therefore, our results suggest that students 

interpreted the elaborating justifications as demands to clarify the processes applied while 

validating justifications led them to refer to pairs of concrete values within a context.  

Figure 4-18. 

Elements of functional thinking identified in validating justifications 

 

The arithmetic expressions were broached operationally. The students failed to 

accept as valid equivalent expressions and performed the calculations to validate the 

equivalence of the result. In the third session students recognized that the functional 

relationship could be expressed as an addition or multiplication or twice and identified 

the equivalence. When equivalent arithmetic expressions involving those ideas were 

presented in the fourth session, however, they found it difficult to make the connection. 

No structural interpretations of the expressions were observed. Structural approaches are 



identified as a scarce but a natural consequence of arithmetic learning (Knuth et al., 2005) 

which become more frequent when they are explicitly promoted in instruction (Molina & 

Mason, 2009). However, previous studies focus in arithmetic expressions within the 

approach to algebra named “Generalized arithmetic”. There is no information about how 

accessible is the structural interpretation of expressions in a functional context. Our 

results suggest this might not be an approach to algebra that naturally favors this structural 

view. Therefore, proposing tasks that include such representations and discussion about 

them is required to foster the generalization of arithmetic relationships. Working with the 

structure of numerical expressions in elementary school should help students understand 

secondary school algebra (Kieran, 1989, 2018). The inference is that the functional 

approach to algebra that guided this study is related to another conception of algebra: 

generalized arithmetic. 

When working with alphanumeric language students first assigned the letter a 

value and then applied the functional relationship. Their written answers furnished no 

evidence of an indeterminate interpretation of letters. Although their explanations 

denoted an understanding of the situation, students’ communication skills in that context 

were underdeveloped. We must say that these results were expected as it was the first 

time that students were asked to use letters to refer to unknown quantities. The first 

students’ reactions in our study match those described in previous studies. For example, 

Küchemann (1981) mentions that students have difficulty interpreting the letter as a 

varying quantity. Also, letters tend to be interpreted as concrete objects, ignored or related 

to a numerical value. Different meanings would affect how activities can be solved. 

Booth's research (1988) identifies possible explanations for the origin of errors in the use 

of letters. One of these is the focus of algebraic activity and the nature of its responses. It 

points out that while in arithmetic the aim is to find a numerical answer, in algebra the 

focus is on processes, relationships and their expression in general. As a consequence of 

not identifying the differences in the type of answer, in algebraic contexts students expect 

to write a numerical answer. Other studies describe how students manage to interpret 

letters as variables that represent indeterminate quantities in a context of functional 

problem solving (e.g. Ayala-Altamirano & Molina, 2020; Blanton et al., 2017; Brizuela 

et al., 2015). However, this requires more time than just a pair of sessions.  

Arithmetic and Alphanumeric expressions were the ones that posed the greatest 

challenge to students. We observed in the recordings of students answering their 



worksheets that their gestures and drawings made situations more specific, favoring 

reflection and concentration on mathematical ideas. For example, S13, after defining the 

“13-2 tables” / “13 boxes” relationship as true, was heard to say, while pointing at the 

numbers, “11 tables and two boxes, 13”. S01 told him the statement was false, that there 

would be 22 boxes. S13 then looked at the drawing of the tables shown at the beginning 

of the session, with S01 drew the tables shown in Figure 4-19 and concluded that the 

number of boxes proposed was wrong.  

Figure 4-19. 

S13’s representation and S01’s written reply 

 

 

S12 was recorded during session 3 as she replied to statement 6. First, she drew 

27 lines, then counted them one-by-one, but touching the top and bottom of each line. 

Those movements would represent the number of boxes per table. Halfway through the 

count, she stopped and decided that wasn’t the solution, writing “it’s false because Z is 2 

and Q is 1517 and that’s not it”. Her gestures showed that she understood the situation and 

could apply it to specific cases by counting. She realized that there were two boxes per 

table but was unable to express the idea in general terms. 

Although in this paper we do not aim to describe students’ gestures in detail, we 

turn to them when needed due to the importance they had to give sense to tasks. Mason 

(2017) points out that students turn to entities of trust to manipulate and give sense to the 

identified relations. In a cyclic process of representations becoming more sophisticated, 

 
17 The Spanish word for fifteen is ‘quince’, hence the ‘Q’. 

There aren’t 13 boxes on 11 tables; 

there have to be 22 

T 



students keep adding layers of appreciation, comprehension and understanding. In a 

similar way Radford (2010) explains how algebraic thinking is composed by layers of 

understanding that depend on the semiotic systems involved.  

6. Conclusions 

This study contributes to a fuller characterization of students’ thinking when 

facing situations involving functions. We contribute to the study of functional thinking 

from a semiotic perspective inspired by some of Radford’s papers (2010, 2018). 

Promoting justification in the classroom led to generating instances of communication in 

which we identified how students thought and expressed themselves through signs. 

Specifically, by means of semiotic systems we could observe how students thought and 

talked about functions. We would like to reiterate that the situations we describe in this 

study are context sensitive, so we do not intend to generalize directly to other scenarios. 

To guide future action, reflection is fundamental (Radford & Sabena, 2015). 

The twice and half relationships were pivotal factors in the sessions analyzed. 

While those concepts can be used to perform tasks involving a known relationship 

without understanding the function per se, in this study they also proved useful for 

prompting discussion on the relationship between two quantities that vary in a joint way, 

even if the students do not explicitly understand this as a functional relationship. Our 

findings emphasize the importance of classroom discussion, which was furthered by 

posing questions that induced different types of justification of how to reach a certain 

answer or why certain relationships or statements were false. The justifications recorded 

helped describe students’ thinking by analyzing the semiotic systems used or their 

interpretation of the systems suggested in the tasks. 

Although the oral justifications expressed in classroom discussion were more 

sophisticated than those furnished in writing, both approaches are important. The written 

justifications helped us understand the consistency between what students said and did. 

Whereas in classroom discussions many correctly identified twice as the relationship 

involved, their written answers failed to detect the cases where its application was in 

order. 

When something was difficult to understand, the existence of a variety of 

systems enabled students to broach the situation with one that was familiar. Other studies 

address tasks in which variables were represented either numerically only or with letters 



only. Part of the originality of this study is the use of a variety of systems and arithmetic 

expressions. 

By proposing tasks with non-consecutive particular cases, students’ 

establishment of correspondence relations was favored. This contrast with results from 

previous studies (Carraher & Schliemann, 2007) that show predominance of use of 

recursive relations, a separated attention to variables and higher difficulty to identify how 

the variables covary, when students are asked about consecutive cases.  

One recommendation for designing lessons would be to analyze arithmetic 

expressions as a way of prompting discussion that would favor a structural interpretation 

of situations. That approach has been applied in other studies, working with algebra as 

generalized arithmetic (Molina & Mason, 2009; Blanton et al., 2018). Although we only 

reported on functional relationship y = 2x, our proposal demonstrates the utility of 

analyzing arithmetic expressions in functional contexts, an approach that also 

accommodates comparing and studying the characteristics of functions. An open line of 

research would be to investigate what happens in contexts involving other types of 

functions.  

Different semiotic systems were introduced gradually. Students first analyzed 

numerical cases and identified the functional relationship. In the following session, 

depending on their responses, we introduced statements or relationships that used other 

semiotic systems to express relationships already recognized.  

The discussion on the veracity of statements also enabled students to analyze the 

variables more fully. In an earlier study (e.g. Ayala-Altamirano & Molina, 2020) we 

showed this type of questions to help students refer to indeterminate quantities and make 

sense of the alphanumeric system. Here we took the study of functions one step further 

by introducing other semiotic systems and affording students more opportunities to justify 

their answers.  
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