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1. Introduction
The learning of number concepts within the school system and the role of the rep-

resentation notion has to analyze and interpret the understanding of number concepts
in schoolchildren are important topics in numerical thinking research. Our research
team is interested in the difficulties young people find on managing numerical struc-
tures when they face advanced mathematical questions. The work presented here will
show the general aims and some results of a piece of research done by our team in this
field.

We have chosen the representation concept to point out some curricular lacks and
to observe students' work on learning numerical concepts, and consequently to inter-
pret their numerical thinking construction. Such an idea has been continuously con-
sidered as it is interesting and useful for the mathematics education researchers
(Janvier, 1978, 1987; Kaput, 1987, 1992; Goldin, 1993; Duval 1993, 1995). Though
most of the considerations we make here are suitable for other mathematical subjects,
our actual contribution is limited to numerical concepts and structures.

Since there is no an univocal meaning for this term, it is important to specify the
sense in which we are going to use the representation concept. We will carry out such
task discussing three different approaches to this concept. Once we have done this, we
will present the results of our research.

2. About the representation notion
2.1. General features
The history of both philosophy and science show the richness of the different inter-

pretations that this concept has (Ferrater, 1981). Some of them are interesting for cur-
rent lines of research in mathematics education.

A first point of interest for us is to underline that the representation idea implies
something to be represented. It is generally assumed that any concept of representa-
tion must involve two related but functionally separated entities. One of these entities
is called the representing world or representation and the other is the represented
world, which implicitly presupposes some kind of connection between the objects of
the representing world and the objects of the represented world.

Thus "any particular specification of a representation should describe the follow-
ing five entities:

1º the represented world
2º the representing world
3º what aspects of the represented world are being represented,



4º what aspects of the representing world are doing the representing
5º the correspondence between the two worlds 
In many of the interesting cases one or both of the worlds can be hypothetical enti-

ties or even abstractions" (Kaput, 1987).
Therefore we consider necessary to distinguish the representation systems from the

numerical concepts and structures for which they stand. When we identify natural
numbers with the numerals that we get by the writing rules of numbers of the decimal
system, we forget that the decimal system is only a way of writing numbers, state-
ments and proofs by lineal combination of successive powers of 10. Using the Arith-
metic's Fundamental Theorem, it is possible to write each number as a product of
prime factors, and this shows its multiplicative structure; this is another representation
system for natural numbers.

Though it is not usual, we will consider which different features and properties of
natural numbers are highlighted by each kind of symbolization. Each of the natural
numbers representation, together with its own rules, proposes a different description
of the natural number concept. It is a simplification to identify numbers with any of its
notations and what is worse it is inadequate for mathematics education research. So,
we will differentiate between numbers and its kinds of representation.

A second important idea is the contemporary philosophical use of the representa-
tion term to refer to anything that can be semantically evaluated (Dancing & Sosa,
1993). It can be said that representations are true, that they refer to, that they are true
with regard to something, that they are about something, that they are accurate and so
on. Contents is the technical term used for naming what makes a representation
semantically evaluable; thus of a statement it is said that sometimes it has a proposi-
tion or truth condition as its content; of a term it is said that it has a concept as its con-
tent; of a graphic, that it expresses a proper relationship between its elements. A
representation's content is just whatever it is that underwrites its semantic evaluation.
From this point of view, symbol expressions, statements, diagrams, graphics, tables
and other common notations are mathematical representations.

 
2.2 Numerical structures and representation systems
Current number conceptualization is based on the system notion; talking accurately

we are not just referring to number concepts but to number systems or structures. A
numerical structure is a set of abstract entities expressed symbolically, provided with
operations or ways of composing numbers and with relationships to make the compar-
ison among its entities possible. What characterizes a numerical structure is the con-
sideration as a whole of its entities, their operations and their relationships (Feferman,
1989). For number systems a rather small collection of big and powerful ideas deter-
mine the structure of each system (Fey, 1990).

Mathematicians work with meaningful symbols and representations (Kaput, 1987)
whose nature and use has been of great interest for mathematics thinkers and research-
ers along the history of this discipline.

The set of signs, symbols and rules to express or represent a numerical structure
must satisfy its systemic nature. That is why we can hear about sign mathematical sys-
tems (Kieran & Filloy, 1989), notation systems (Kaput, 1992) or semiotic systems
(Duval, 1993). We prefer to use the term representation systems when talking about
the several modes of expressing and symbolizing numerical structures by means of
some specific signs, rules and statements. The decimal numeration system is a para-
digmatic example of a well known representation system for natural numbers.



The structural consideration of numbers and our choice of distinguishing between
numbers and their representations lead us to the formalist foundation of mathematics.
Numerical fields are established as operative fields by the formal approach of Peano
and Hilbert (Badiou, 1990). The formalist foundation of mathematics stresses a tech-
nical consideration of numbers, as some kind of tools to carry out some processes, fol-
lowing some rules and with the possibility of establishing a variety of relations among
numbers. In the formalist school, signs and symbols play a central role, together with
the syntactic rules by means of which they combine to cause more complex expres-
sions and formulas, which are necessarily complemented by finitist procedures to
prove statements and formulas of each numerical system  (Von Neumann, 1964).

 On the other hand, in our position about its epistemological base, mathematical
concepts do not refer to objects or physical phenomena but to the relations among
objects, phenomena or concepts, and consider mathematical concepts as abstract enti-
ties that need to be expressed by some symbolic system; that is to say, mathematical
concepts are given by means of one or several specific representations. We consider
two different levels of representation: facts or particular concepts (i.e., the unity) rep-
resented by specific symbols (i.e., 1), and the relationships between concepts (i.e., one
plus one makes two) represented by symbolic statements (i.e., 1 + 1 = 2) (Körner,
1977). We assume a phenomenological base for the numerical concepts and relations. 

Besides, there is not a symbolic system completely suitable to express the com-
plexity contained in each mathematical concept; this is the reason why each concept
has more than one representational system which at the same time emphasizes and
sets out some important properties but also blurs or makes other properties more diffi-
cult to understand. We accept as mathematical representation systems: natural lan-
guage, drawings and graphics, different symbolical writings, tables and the
algorithmic notations which describe an operating rule.

2.3 Representation and cognition
In mathematics education mathematical concepts should be linked with the mental

activity of human beings. Following Wittgenstein when he analyzes several mathe-
matical language games and among them the number concept (Wittgenstein, 1988; §§
65-68), we claim that every mathematical concept is supported by its different uses
and meanings and so by its representations. All this in the sense that the use of each
concept is what establishes its semantic field by extension and that each other mean-
ingful mode of understanding a concept needs its own symbolization system or repre-
sentation to be recognized. This leads us to the well-known distinction between
external and internal representations. Internal representations or thinking objects,
which are supposed to be placed within individual human minds, are different from
external representations whose semiotic character is given by signs, symbols or
graphics.

The wide use of the representation notion to characterize human mental conditions
and activities is an outstanding feature in the current development of Cognitive Psy-
chology (Guttenplan; 1994). We assume that cognitive processes are those that deal
with representations. What establishes the difference between cognitive processes and
those that are not is exactly that the former but not the latter can be epistemically eval-
uated. Since only something with contents can be epistemically evaluated, only pro-
cesses can be considered as being cognitive as they involve representations. A proper
internal domain of external representations is essential in the development of numeri-
cal thinking processes; this is a basic tenet for the understanding of number concepts
in human beings. 



We consider understanding as a representation, which is structurally or conceptu-
ally directed, of the relationships between the pieces of information that should be
learnt, and between that information and those ideas and our knowledge and experi-
ence basis (Wittrock, 1990). We admit that different subjects present different under-
standing about the same concept or mathematical structure because their
representations have different contents. The links between external and internal repre-
sentation are clues to study understanding phenomena.

2.4 Balance
The representation concept in mathematics education must consider its duality.

"To think about and to communicate mathematical ideas we need to represent them in
some way. Communication requires that the representations be external, taking the
form of spoken language, written symbols, pictures or physical objects. (...) To think
about mathematical ideas we need to represent them internally; in a way  that allows
the mind to operate on them" (Hiebert & Carpenter, 1992). 

Mathematical knowledge is only reachable by external representations, which are
the facts for this knowledge. Representation is also involved in the actual working of
our thought, and it has a central position in the learning of mathematics.

This duality of the concept converts it in a suitable tool to study understanding
phenomena; for the researchers' aims it is useful when deciding to inquiry on the dif-
ferent ways by which human beings process numerical structure. 

We have decided to use the term representation systems though we are aware of
the problems which have been pointed out by Kaput (1992). He considers this term
leads to the distinction between the representation system (representing) and the
numerical concept (represented), and so it is necessary a self definition for the second
one. Nevertheless we consider that we have the same problem if we talk about signs
and symbols instead of representations, because  symbols must express or denote a
concept whose characterization has to be done outside these notations, at least from a
non-nominalistic point of view. This is why we have discussed some of the previous
ideas.

From the analyzed complexity we have been able to emphasize phenomenological
and cognitive dimensions of numerical thinking. We have also been able to move
away from the platonic foundation which claims for the reality of mathematical con-
cepts out of space and temporary conditions and also out of human beings mental
activity (Kitcher, 1984).

  
3. Scope of this work
3.1 Background
At the beginning of 80's there are two conceptual fields whose study is based on

the  notion of representation.
One of these fields is related to the concept of function; the studies that have been

carried out emphasize the different systems for functions representation and  detect
some difficulties for the understanding of this concept due to translation problems
among these systems. Among the most famous are Janvier's works, which ended in
his thesis in 1978, and which later were used for the materials created by the Shell
Center in Nottigham University. These materials undertake a kind of diagnostic teach-
ing on this field, based on graphic representations.

The second of these fields deals with the concept of rational number, considering
and analyzing different representation systems for this number field. Behr, Lesh, Post



and Silver's works (1983) are among the pioneer ones in the study of this number set,
which is still offering useful results.

In 1984 a symposium is held in the University of Quebec (Montreal) organized by
CIRADE, in order to present and discuss the last stages of a research project on repre-
sentation. The result of this symposium is the book "Problems of Representation in
the Teaching and Learning of Mathematics" (1987), where it is discussed the useful-
ness of the concept of representation in mathematics education .

The interest in the topic is specially shown by the existence in the International
Group for the Psychology of Mathematics Education till 1995 of the Working Group
on Representations. Goldin, who was the coordinator for this working group,
expresses the general concern on this topic: "Representations are a key theoretical
construction in the psychology of mathematics education. The meaning of this term is
quite broad and it includes:

a) external physical embodiments (including computer environments): an external
structured physical situation or set of situations that can be described mathematically
or seen as embodying a mathematical idea;

b) linguistic embodiments: verbal, syntactic and related semantic aspects of the
language in which problems are posed and mathematics discussed; 

c) formal mathematics constructs: a different meaning of representation, still with
emphases on a problem environment external to the individual, is that of a formal
structural or mathematical analysis of a situation or sets of situations;

d) internal cognitive representations: very important emphases include students'
internal, individual representation(s) for mathematical ideas, such as "area", "func-
tions", etc., as well as systems of cognitive representation  in a broader sense that can
describe the processes of human learning and problem solving in mathematics"
(1993).

From a semiotic approach Duval, from the University of Strasbourg, is working
since the beginning of the 80's on the representation notion and on the understanding
of mathematical objects; his work Semiosis and Noesis (1993) is a valuable contribu-
tion in this sense.

Nevertheless, we have not found any previous work on the representation systems
for natural numbers neither on the understanding of the general term of a sequence
which have been based on these several representation systems.

3.2. Aims and assumptions
The main aim of this work is to make clear the plurality of representation systems

by which number structures are expressed. We maintain that each number system, as a
complex set of entities, relationships and operations, cannot be expressed as a whole
by only one representation system. Conventional number structures need the coordi-
nated action of several representation systems in order to underline essential features
of such structures. Particularly, graphic representations play an important role in
understanding number structures. These are some of the conclusions in our work
"Exploring number patterns by means of point configurations" (Castro, 1994). Here
we study the integration of three representation system for natural numbers in order to
deepen on the concepts and procedures used by 12-14 years old students in relation to
the notion of general term of a sequence of natural numbers . 

4. Representation Systems for Natural Numbers



4.1 Decimal numeration system
Decimal numeration system is a powerful mathematical tool, the result of a long

historical evolution, inspired by economical principles, not only semiotic but also
operational, by which men have developed and expressed their counting, classifying,
measuring and ordering skills. In our current society the domain of this system is a
basic cultural fact; its knowledge establishes one of the criteria to determine that a
human being has acquired the basic skills that allow him/her to hold a deserving intel-
lectual position in society. That is why educational systems give such a value to trans-
mitting and learning decimal numeration and basic arithmetic operations, using the
decimal numeration system as the only one.

This is the way we come to identify each number with its decimal notation and the
set of natural numbers with their Arabic notations. Such an identification, although
culturally useful and economical, is still a limitation for the learning of natural num-
bers. 

4.2 Arithmetical analysis
The dynamic character of the natural numerical system gets blocked by the inertia

of the common decimal representation; its dynamism requires that numbers be deter-
mined by their intertwined relationships. So, knowing, for instance, what 15 means is
not just reading it as 1 ten and 5 units, but also interpreting it as 3 times 5, 5 times 3,
next to 14, preceding 16, the sum of two consecutive numbers: 7+8, the sum of three
consecutive numbers: 4+5+6, the sum of five consecutive numbers: 1+2+3+4+5,
coming before a square 42 -1, the sum of two numbers multiplied by their differ-
ence:(4+1).(4-1), half of 30 and so on. From this point of view, each number is a knot
in which several relationships intertwine, it is an element of a complex net closely
connected whose wider or smaller domain will determine the real understanding
reached by each subject in the natural numbers system (Rico, 1995).

The former considerations show that, on the basis of decimal notation,  there are
other representation systems for natural numbers. The arithmetical analysis of num-
bers is one of them; this analysis consists of considering each number as a sum or as a
product of simpler numbers. The former examples are expressions of number 15 by
means of its arithmetical analysis.

4.3 Graphical systems
Nevertheless, we still have not taken into account ways of graphic representation.

The number line is the standard graphic representation. We choose two points arbi-
trarily on a line and we give them the values 0 and 1; by agreement, the point that
matches 0 is on the left of the point that matches 1:

Fig. 1

From 1 to the right we write down points that keep the same distance between
them than that of the two initial points and mark on them consecutive natural num-
bers. This representation is an useful tool to understand numbers, carefully studied for
the domain of the natural numbers system (Resnick, 1983).

4.4. Point configurations

• • • •
0          1

•



History sets us in touch with another powerful system of representation for natural
numbers that has been ignored by the current school mathematical curriculum. We are
talking about point configurations used to represent figurative numbers and whose
origin and development was the Pythagorean number concept.

For those who followed the Pythagorean doctrine a number was not just a label for
a collection, the symbol for a quantity or an intellectual construction, but something
which was consistent by itself; numbers were like atoms that, in their varied composi-
tions and relationships, gave the essence itself of the plural real world.

This number notion had its best expression in the representation that we know as
point configurations or figurative numbers, completely different from the usual
numeration systems. 

The basic idea of this representation system is considering each number as an
aggregate of points or units distributed on a rectangular or isometric scheme and
according to a flat or space geometric figure. This way triangle, square, rectangle,
pentagon, pyramid and cubic numbers come across, as many as different geometric
figures are considered; they allow us to think in each number as a whole arranged
with regard to a fixed geometrical structure

 Fig. 2

To summarize:
Point configurations  are a number representation system based on:

*a single symbol: the point;
*a structured space of representation, commonly the square or isometric

scheme when working on the plane;
* a way of arranging the quantity of points that satisfies some agreed crite-

ria of symmetry or regularity and that can be explicited easily.
These three conditions establish a new representation system for numbers (Beiler,

1966), whose advantage lays in providing graphic models which help to visualize and
analyze the arithmetic structures of each number.

Two important pieces of information emerge when arranging, geometrically, the
units that embody a number. On the one hand, we see an arithmetical analysis of the
number: a triangular number is the sum of consecutive numbers starting from 1, a
square number is the product of a number by itself, a rectangular number is the prod-
uct of two consecutive numbers. This visual analysis allows us to know several prop-
erties of each number and relate it with many others. Besides, the same number could
be considered as belonging to several kinds of figurative numbers.

On the other hand, different numbers share the structure that represents each kind
of point configurations. The shared configuration shows several arithmetical analysis
and each one becomes a common property for all these numbers; this property can be
generalized. So the representation system of point configurations becomes a useful

. . . . ...... ... ..
... ...
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tool to establish general properties of numbers and find new relationships among
them. 

Fig. 3

Historically this representation system allowed mathematicians to establish gen-
eral number properties and algebraic identities without having the current symbolic
signs of algebra. We can find the use of figurative numbers along the Theory of Num-
bers history.

5. A curricular problem
5.1 Starting with sequences
The concept of sequence of natural numbers is a complex one; it is based on two

notions: the one of a totally ordered set and the one of infinite process, by which every
term of the sequence has a following one. When we have several terms of the
sequence and we are challenged to go on with it, the proposal is to find new numbers
related with the ones just known trying to use the same relations they have among
them. There are several ways to relate a limited number of terms; to the question: "1,
2, 4, .., which is the next term?" there is a multiplicity of feasible answers (Sloane,
1973). The possibilities of finding new relations among the terms of a sequence are
decreasing when its number is increasing, and the options to continue the sequence
could be reduced to a single one. Recognizing the relations among the given terms of
a sequence can let the students find new ones, that is to say, continue the sequence.
Nevertheless, the characterization of a sequence is given by its general term.

5.2 The general term of a sequence
To find and express the general term of a sequence offer some understanding diffi-

culties, and there are many students who are not able to find a proper meaning for this
idea because the high abstraction level implied on it. What does the general term of a
sequence mean? The general term of a sequence is the algebraic expression of the rule
which is followed by all its terms taking into account its corresponding ordinal place.
The general term of a sequence expresses the common structure shared by all its terms
when they are considered as members of an ordered set. The usual way to write the
general term of a sequence is by means of algebraic notation. So, the formula an = (n2

+ 2n)/2 expresses that all of the terms of the considered sequence can be found taking
the square of its ordinal, adding up its double and dividing the result by 2. Neverthe-
less, this idea of a common structure or the shared structure of all the members of the
sequence cannot be captured by the analysis of the relations among two or three con-
secutive terms. 

To have several numbers written in the decimal system at your disposal does not
allow us to observe the common structure they have; in order to know this structure is
necessary to have the numbers written by a shared arithmetical analysis or, better than
this, to have them expressed by means of point configurations following a single pat-

. . .. . .. .
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tern. Triangular numbers visualization shows that the numbers 1, 3, 6, 10, 15, ...share
a common pattern (fig. 2). The arithmetic version of the pattern:

1, 1 + 2;  1 + 2 + 3; 1 + 2 + 3 + 4; 1 + 2 + 3 + 4 + 5; ...
advances the shared structure by means of the first numbers of the sequence: each one
is the result of summing up consecutive numbers from 1 on till the corresponding
number to its ordinal position in the sequence. But it is still necessary to consider
many understanding phenomena to establish that the general rule of this sequence is,
precisely, an = (n2 + 2n)/2.

5.3 Curricular context
The work "Exploring number patterns by means of point configurations" (Castro,

1994) poses and studies the viability of a representation system for natural numbers,
as an adequate tool for visualizing and analyzing sequences, similar to the graphic
representation of functions, in the mathematical curriculum of the Compulsory Sec-
ondary Education. We study the strength of point configurations to express numerical
relations and properties; we also study how students discover  and use the numerical
properties by means of such representations.

Our study is summarized in the following considerations:
 * the coordinated use of three representation systems for natural numbers: point

configurations, decimal numeration system and arithmetical analysis or development
of numbers;

* the work and reflection on the pattern by which linear and quadratic sequences
are defined on terms of point configurations and arithmetical development;

* the performance of the following tasks: to continue a sequence, to extrapolate
terms; to generalize; to find out the general term and use it to obtain specific ones.

6. Findings and discussion
6.1 Sequences and representation systems
Point configurations allow us to represent sequences of first and second degree tak-

ing integer values by means of a graphic display. So, arithmetic progressions  allow
simple point configurations, generally with rectangular shape and with constant base
or height. They are called linear sequences because the pattern representation of their
terms can be analyzed decomposing them by lines, and the difference between two
consecutive terms can be described as the aggregation of a line.

      •       •  •       •  •  • 

      •       •  •       •  •  • 

Fig. 4

   The sequences with constant second differences are those whose general term is
expressed by a second degree polynomial function. The simpler cases are the
sequence of square numbers: Cn = n2, and the sequence of rectangular numbers: Rn =
n (n + 1) .

It is possible to make a graphical representation of theses sequences having in
mind that its two dimensions vary; the change from one term to the following is
defined by its growth in both dimensions. The structure of these numbers is called



quadratic and the change from one term to the following is not constant but variable
with a linear variation. 

Fig. 5

In general, if the rule of a sequence is an = an2 + bn + c, such a sequence has a con-
stant second difference. If an takes natural values for every n, then each of its terms
can be represented by a polygonal plane configuration, regular o irregular, and all its
terms have the same pattern of representation.

6.2 The diversity of analysis
We have introduced 12-14 year old secondary education students to the symbolic

representation system of point configurations. We have used these representations  as
an alternative symbolic system for the purpose to carry out the following tasks: to
visualize the representation pattern shared by the terms of the sequence, to continue
the sequence and represent some advanced terms with the pattern. Thus, in the exam-
ple of figure 5, students recognize the geometrical shape shared by the three repre-
sented terms, they are able to add the two or three following terms and also to
represent the 11th or 15th terms. 

Likewise, point representation provides a structural analysis of the terms of the
sequence and allows us to express new terms by means of the arithmetic analysis
obtained. For the figure 5 example, there are several correct arithmetic analysis found
by the students:

a)  2,  3 + 3,  4 + 4 + 4, 5 + 5 + 5 + 5, ..

b)  1 + 1, 2 + 2 + 2, 3 + 3 + 3 + 3, 4 + 4 + 4 + 4 + 4, ...

c)  2 x 1, 3 x 2, 4 x 3, 5 x 4, ...

d)  12 + 1, 22 + 2, 32 + 3, 42 + 4, ...

e)  22 - 2, 32 - 3, 42 - 4, 52 - 5, ...

We can observe that there is a variety of different analysis of the point configura-
tion pattern; and each one provides a possible arithmetic development (sometimes
additive and sometimes mutiplicative) which is shared by all the terms of the
sequence. In this way it is possible to obtain several expressions for the terms of the
considered sequence, with the representation system we have called arithmetic analy-
sis. When the same sequence is displayed in the decimal numeration system: 2, 6, 12,

. .
. . .
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20,.... students have not enough information to find a common arithmetic develop-
ment for all these terms.

6.3 Findings
We have studied how the students understand and generalize the common structure

that the terms of a sequence have using the established connections among the terms
of the point configuration sequence and the terms of its arithmetic development. That
is to say, we have tried to explicit the general term of a sequence notion that 12-14
year old students have by means of the question "How can we write the n-th term?"
The answers to this question are different according to the representation system con-
sidered.

So, in the decimal number system, the most common expression given for the gen-
eral term is n, which is the immediate symbolic translation for the expressions: "a
number in general", "any number of the sequence", "any term of the sequence", or the
like.

When the geometrical pattern is used, as it is necessary to leave some wide spaces
between the points to indicate the generalization to n, this leads some students to
change the model by a continuous shape for the general term. That indicates the diffi-
culty of this representation system for expressing the general term.

In representations by means of the arithmetic development system we find that it is
not difficult to move to the general term in a successful way. Nevertheless, when
pupils have several arithmetic expressions about the terms of the same sequence it is
not easy to accept as equivalents the general term expressions obtained.

A strong obstacle for finding the expression of the general term of a sequence has
been detected in this study. Both, the point representations and the arithmetic develop-
ments, express in some way the structure shared by several numbers. The decimal
notation of the same numbers does not allow us to capture the common structure.

When we ask for obtaining the general term of a sequence we really ask for the
general expression of the common structure of all its terms, by means of an algebraic
symbolism. Because in the number decimal system each term is shown by a single
symbol and the common structure is not considered, the former question (how can we
write the n-th term?) cannot be answered in this system. This explains that the most
common given answer is "n", which is a single symbol and expresses "a general
term". With the point configurations representation system it is possible to appreciate
the common structure, but the concrete manner of such representations makes the
finding of a general term difficult. Only with the arithmetic analysis system it is possi-
ble to generalize the expressions of a sequence terms.

The question: "Which is the general term of this sequence?" is a more abstract ver-
sion of the question  "How can we write the n-th term?" and it has its answer on the
arithmetic development representation system and it has no answer in decimal system.
There are very few students in our study capable of understanding the question,
because many times it is posed in the former system (decimal) and it must be replied
necessarily in the latter one (arithmetic analysis). 

Only with the integration of the representation systems, as different expressions of
the same idea, it is possible to talk about the understanding of the concepts of a
sequence and its general term.

7 Conclusion
We have introduced 12-14 year old secondary school students to the point configu-

rations representation system. For that purpose we have used these representations as



an alternative symbolic system to carry out a structural analysis of numbers sharing
the same visual representation pattern; in this way we have obtained the arithmetic
development shared by the terms of the same sequence.

Our work focused on the study of linear and quadratic natural numbers sequence
by using the three symbolic systems just mentioned: figurative, decimal number  and
operational or arithmetic development. Thus, it is possible to stress the development
patterns of point sequences as well as number sequences. We have considered point
configurations as models that express development patterns of number sequences,
showing the lack of representation of these contents in the decimal system writing.

The results obtained  in our study have highlighted that students accept, without
difficulty, the point configurations system for numbers and they use it properly work-
ing with different geometrical models; students find a great variety of relations for tri-
angular and squared numbers and they establish arguments to connect the geometrical
pattern with its respective arithmetic translations by means of point configurations.

 The data provided by the students, from the proposed tasks, have shown that the
most intuitive of the three representation systems is the point configurations one due
to its graphic character, which favor a visual analysis and allows the processing of the
quantity structure. However the maximum strength of this system is reached when it
is conjointly used with the arithmetic developments and the current decimal number
system. A point configuration is meaningful when it is used as the visualization of a
singular arithmetic development for a specific number (or a family of numbers). The
variety of developments suggested for the same point configuration shows the intui-
tive character of this system.

To the arithmetic level, the new symbolic system provides an operative character to
natural numbers which is seen while carrying out the assigned tasks; this way a vari-
ety of arithmetic developments are performed for every number. The idea that there
are numbers with the same arithmetic structure is also strengthened; this structure is
visualized by a geometric pattern and it is expressed by an arithmetical  development.
This notion is a first step to the generalization of an arithmetic base.

 A third aspect related to the students knowledge clearly shown in the data ana-
lyzed is the richness of relations performed with numbers which share the same pat-
tern.

We have checked that there is a weak integration among the three symbolic sys-
tems and which is specially clear in the low performance obtained with the tasks
designed to express the notion of the general term of a sequence. There are very few
students able to identify the general term of a sequence with the operative structure
shared by the specific terms given for this sequence; this structure is understood more
easily when it is expressed by its arithmetic development.

 Though students are able to perform a variety of tasks with the new representation
systems, we can say that the 12-14 year old students' understanding on the general
term notion is virtually nonexistent because we have not appreciated strong connec-
tions among the three representation systems neither any kind of structuration among
the mental representations corresponding to the different representation systems used.
The arguments given by students show that decimal system and arithmetic system are
not clearly seen as two views of the same facts, and there are scarcely some transla-



tion rules between them. Only a few students, who coordinate more or less the three
systems and incorporate them, show a kind of control for the notion though several
understanding levels are appreciated.

There is enough evidence to maintain our main hypothesis: the richness of the
numerical structures and their complexity need several complementary systems to be
understood; the contribution of graphics representations is essential to understand cer-
tain structural notions and to develop numerical thinking.

The integration of several representation systems have been necessary to show the
difficulties of some concepts as it is the case of the general term of a sequence, and
also to establish ways to overcome these difficulties through the understanding of the
underlying structures.

Numerical thinking does not end with the study of the different representation sys-
tems, which are useful for the development of a concept, though this analysis is an
unavoidable step as well as the notion of representation system. The understanding of
numerical structures has a complexity which is still unknown  and it needs to be care-
fully explored. This has been the aim of this study.
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