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Abstract

In this paper, we present the generalized tanh method to obtain exact solutions of
nonlinear partial differential equations, and we obtain solitons and exact solutions
of some important equations of the mathematical physics.
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Introduction

The search of exact solutions of partial differential equations is of great importance, be-
cause these equations appear in complex physics phenomena, mechanics, chemistry, biolo-
gy and engineering. A variety of powerful and direct methods have been developed in this
direction. In this paper, we consider the generalized tanh method [1]. In particular cases
we apply the mentioned method to obtain exact solution of some important equations
such that: a reaction-diffusion equation, double sine-Gordon equation, and the (2 + 1)
dimensional sine-Gordon equation.

1. The generalized tanh method

The simplest classes of exact solutions described by ordinary differential equations involve
travelling—wave solutions. The tavelling—wave solutions have by definition the form

u(z,y,...t)=v(&), E=Mz+y+...+ A\t (1.1)

where \; (i = 1,2,...,n) are constants. The travelling—wave solutions occur for equations
that do not explicitly involve independent variables,

P(u7 ur> Ut, umm; umt; utt7 .. ) - 0 (12)

Substituting (1.1) into (1.2), we obtain an ordinary differential equation for the function

v() :
P(v,v',0",...) =0 (1.3)
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The next crucial step is to introduce a new variable ¢ = ¢(£) which is a solution of the
Riccati equation

¢ =¢*+k (1.4)
whose solutions are given by
(1
-7 k=
VEtan(VkE — ¢) k>0
o) =1 _ k cot(VEE — ¢) k>0 (1.5)
—v/—ktanh(v/—k&é —¢) k<0
\—\/:k: coth(v/—ké —¢) k<0

The generalized tanh method can be described as follows:
= Step 1. Introduce the transformation u = v(§) with & = x + A\, or £ = = + vy + At,
which transforms (1.2) into (1.3).

= Step 2. We seek solutions of (1,3) in the form
u(z,t) = v(E) =) aid, (1.6)
=0

where ¢ = ¢(€) is a solution of (1.4). The exponent m must be determined before
the a; can be computed. Substituting v(&) in (1.3) the coefficients of every power of
¢ must vanish. In particular, the highest degree term must vanish. We obtain m.

= Step 3. To generate the system for the unknown coefficients a; and parameters A,
and k, substitute v(£) in (1.3) and use the relation (1.4).

= Step 4. The most difficult step of the method is to analyze and solve the algebraic
system.

= Step 5. Substituting the solution from step 4 in v(£) and reversing step 1. We obtain
the explicit solutions in the original variables.

1.1. Exact solutions for the double sine-Gordon equation

This is the equation
Uy = sinu + sin 2u. (1.7)

First introduce the transformations

i V-v-1t | ZE N Ve
siny = ————, sin2y = —————
21 21
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after which we obtain the equation

oV Vo =2V, V, =V V34V +1=0. (1.9)
The substitution V = v(§) = v(x + At) in (1,9) gives us the equation

2000" = 2A(v")? — vt — P + v +1=0. (1.10)

We seek solution of (1.10) in the form

ziémw, (1.11)
=0

where ¢ = ¢(€) is solution of (1.4). Substituting (1.11) and (1.4) into (1.10) and balancing
vo” with v* we obtain m = 1. Therefore

v=ag+ a1y (1.12)

Substituting (1.12) and (1.4) into (1.10) and equaling the coefficients of ¢*(i = 0,1,...)
to zero we get the system

(1+ aq — a3 — ag — 2k*\a? = 0.
ay + 4apar \k — 3ata; — 4a3 = 0.

—3aga? — 6aga? = 0. (1.13)
4a0a1)\ — a‘I) — daga? = 0.

\

We obtain the following solutions of (1.13):

1 1, 3
ap=—= ,A=-aj, k=-—

where a; # 0 is an arbitrary constant. Since k > 0, according to (1.5) we get

5+ 3cot? + 2v/3 cot 0
co \/_CO ) (k:>0)

1) =
uy(x,t) arccos( 111 Beotd)

5—2v3tanf + 3tan26
(k> 0)
(=14 v/3tan#)

V)

The solution w;(z,t) is not considered in

ug(x,t) = arccos <
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1.2. Solutions for the (241)-dimensional sine-Gordon equation

This is the equation
Ug — Uy — Uyy + m*senu = 0. (1.14)

First we introduce the transformations
V=e"V(z,y, t)=v(),E=x+yy+ . (1.15)
We get the required form
200 =2 = D) (vv" +0") + (v* —v) = 0. (1.16)
Balancing vv’f and v? in (1,16), we obtain
v =ag + a1¢ + az’

The algebraic system is

( —(mPag) + m?ag® + 2k*a1? + 2v*k%a1? — 2k*N?a,? — 4k apas — 4Nk apay + 4k*Nagas = 0
—(m?ay) — 4kaga; — 4\?kagar + 4kN*agar + 3m2agay + 4k*aras + 42 k2aras — 4k*Najas = 0
—daga; — 4y*apa; + 4 2apay + m2ad — dkajas — 4y kayas + 4kN?aias + 6m2agaias = 0
3m2aga,? — m2ay — 16kagas — 1672 kagas + 16kN2agas + 3m2ag?as + 4k?as>+

102 k2ay? — A2 \2ay? = 0
—2a1% — 272a,% + 2X\%a,? — 12apas — 1292 agas + 12X%agas + 3m2a?as + 3m2agas® = 0
—8aias — 8y2aras + 8\ajas + 3m2aias® = 0

[ —4as® — 47%a2® + 4X%ay® + mPay® = 0.

(1.17)
We obtain the following solutions:

Uy = arc cos <j: tan*(Vko) + 1) (k> 0)

2tan?(v/k6)

tanh® (v —k0) + 1
uz:arccos<i— anh ( )+> (k <0)

2tanh?(v/—k#)

1 1
U = arccos <2(a0 a tanh?(v/~£6)) ap — kas tanhz(\/—k9)> ( )

where 6 = x + X\t F %y\/—él + %2 +4X? and ag, ap are constans.

Solution wg is not considered in [1] and u; and uy have some different form from those
that are given in [1].
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1.3. The Dodd-Bullough-Mikhailov equation
This is the equation

Ut + pe¥ + ge” 2 = 0. (1.18)
From the transformation u = InV, V = v(§) and £ = = + At, we get the equation

v — A(v)? + pv® + ¢ = 0. (1.19)
Balancing vv” and v3, we obtain
v=ag+ a1+ asg’
The algebraic system is

(q + pag® — k2 ai? + 2k*Nagas = 0
2kXagar + 3pag’a, — 2k*Xajas = 0
2X\aga; + pa3 + 2kAajas + 6pagaias =0
3paga® + 8kagas + 3pag?as — 2k*Nas? = 0 (1.20)
a2 + 6 agas + 3paiZas + 3pagas? = 0
4 aiay + 3paias? =0
| 2)az + paz® = 0.

The solutions are given by:

3(1 + 3cot? VEb
u1:1n<q’( © f)> (k> 0)
2p3
5(1+ 3tan2Vko
u2:1n<q’( ?nf)> (k > 0)
2p3

4y — In <q§(1 — 3coth? \/__k9)> (k < 0)

Qp%

v —n <q§(1 — 3tanh® \/_—k9)> (k< 0)

Zp%

2 1
3p303
a t. These solutions are different from the ones that are considered in

where 0 = 2 —
1.

1.4. The reaction-diffusion equation
Consider the reaction-diffusion equation (see [2])

Ut + QUgy + Pu + yu® = 0. (1.21)
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The transformation
u(z;t) =v(f). {=x+ M

reduces(1.21) to
" + kv + ko0

where
g gl
P ar 2T a+ N
The algebraic system is
ﬁao + 7@03 =0
3yapa? =0

Bay + 2aka; + 2kN a; + 3yag’a; =0
20&&1 + 2)\2a1 + 7&13 =0

The solutions are:

_ :F\/Bcot\/EQ

w N (k> 0; 8> 0)
uzz:F\/Bta%v\/Ee (k>0; 6>0)
Uz = ﬂFi\/BC(j;;\/Eie (k<0;8<0)
uy = :Fi\/BtEi;l; vkif (k < 0; B <0)
where § = z + #ﬂt.
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