## Cálculo de Áreas mediante la Suma de Riemann con la TI-83

Jose Luis Lupiáñez Gómez

## Introducción

La tecnología que nos ofrecen las nuevas calculadoras gráficas permite afrontar tareas en el aula de matemáticas desde dos persepectivas generales: realizar actividades tradicionales desde enfoques novedosos, y desarrollar nuevos problemas que escaparían de las posibilidades del trabajo con papel y lápiz. En este artículo conjugamos ambas perspectivas en una actividad para introducir el cálculo del área que encierra una curva, basada en la Suma de Riemann, y que puede realizarse con la calculadora TI-83. El planteamiento de la actividad permite estudiar varias funciones sin perder tiempo en tediosos cálculos, con idea de observar lo acertado de este método de aproximación.

## La Suma de Riemann con la TI-83

Usando la TI-83 es posible calcular la Suma de Riemann para una función f(x) en un intervalo [A,B] en el que sea continua. Básicamente, consiste en dividir ese intervalo en N subintervalos y para cada uno de ellos se multiplica la altura de la función en el correspondiente extremo derecho por la anchura del subintervalo, y al sumar las áreas de los rectángulos así construidos se obtiene la suma de Riemann. Veamos cómo seguir este proceso con la calculadora:

Tomemos como ejemplo la función  $f(x) = x^3 - 9x^2 + 24x - 12$  en [1,5]. La guardamos en el editor de ecuaciones en Y1 (Figura 1) y lo primero es introducir los extremos del intervalo y el número de particiones del mismo. Consideremos inicialmente 8 particiones del intervalo. A continuación generamos una una lista  $L_1$  con los extremos derechos de cada uno de los subintervalosdel intervalo y de la amplitud *H* de los subintervalos (Figura 2).





Figura 2

Construiremos una nueva lista L2 para la imágenes por nuestra función Y1 de esos extremos derechos de los subintervalos (obtendremos la altura de los rectángulos), y otra L3 para el producto de los elementos de L2 por la amplitud H de los subintervalos (que nos brindará el área de cada uno de los rectángulos construidos):



Esta información puede analizarse desde el editor de listas de la TI-83 del menú <u>STAT</u> (Figura 4), y para hallar el área encerrada bajo la curva con esta partición del intervalo usaremos el comando *Sum* de la calculadora para hallar la suma del área de todos los rectángulos; es decir, de todos los elementos de la lista  $L_3$  (Figura 5):



Para precisar ese cálculo, bastaría aumentar el número de subintervalos (N) y volver a ejecutar aquellos comandos que dependen de ese valor. Para ello se emplea la opción 2nd ENTRY de la calculadora (Figuras 6 y 7), y se puede observar cómo disminuye el área al aumentar el número de subintervalos:



Es posible diseñar un programa que represente gráficamente la función y que dibuje los rectángulos correspondientes al número de particiones que indiquemos, para acabar

dando la suma de las áreas de los mismos. En Baxter & Reynolds (1999, pág. 411) aparece un programa de este tipo. Lo primero es seleccionar una ventana de graficación apropiada a nuestra función y al intervalo que estamos trabajando (Figura 8):



Al ejecutar el programa se pide los extremos del intervalo inicial y el número de particiones del mismo que queremos hacer (Figura 10a). Con esta información se representa la gráfica, se dibujan los rectángulos y la calculadora se queda en pausa (Figura 10b). Con un toque a la tecla ENTER se sale a la pantalla principal y muestra el área deseada (Figura 10c):



Con distintas ejecuciones del programa, y cambiando el valor de N obtenemos diferentes aproximaciones (Figuras 11 a 13):





Finalmente, podemos usar las opciones del comando CALC de la TI-83 para hallar exactamente el área encerrada por la curva en el intervalo deseado. La reiteración del programa anterios permite observar la convergencia de las diferentes aproximaciones a ese valor final (Figura 14):



**El Programa RECTANG** 

| Disp "VALOR DE A"       | $Line(X-H,0,X-H,Y_1)$ |
|-------------------------|-----------------------|
| Input A                 | $Line(X-H,Y_1,X,Y_1)$ |
| Disp "VALOR DE B"       | $Line(X,0,X,Y_1)$     |
| Input B                 | $X+H \rightarrow X$   |
| Disp "VALOR DE N"       | $J+1 \rightarrow J$   |
| Input N                 | If J <n< td=""></n<>  |
| (B-A)/N→H               | Goto 1                |
| ClrDraw                 | Pause                 |
| DispGraph               | HS→S                  |
| 0→J:0→S                 | ClrHome               |
| A+H→X                   | Disp "SUMA:"          |
| Lbl 1                   | Disp S                |
| $Y_1 + S \rightarrow S$ |                       |

Baxter, N., Reynolds, B. (1999) Workshop calculus with graphing calculators. Springer

**Jose Luis Lupiáñez Gómez** Dpto. Didáctica de la Matemática. Univ. de Granada Facultad de Ciencias de la Educación Campus Cartuja s/n. 18071 Granada. lupi@ugr.es