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Relación con el aprendizaje de los estudiantes

Conocimiento del profesor

Aprendizaje de los estudiantes

¿De qué depende que los estudiantes progresen 
en su aprendizaje?
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Aprendizaje de los estudiantes
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Experiencias que viven alrededor del contenido

Aprendizaje de los estudiantes
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Oportunidades que les ofrece el profesor
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Diseño y desarrollo curricular (tareas)

Oportunidades que les ofrece el profesor

Experiencias que viven alrededor del contenido

Aprendizaje de los estudiantes

CreenciasMetas

Contexto curricular Otros contextos
¿Qué conocimiento?

¿Qué competencias, conocimientos, habilidades, 
actitudes y creencias se requieren para ofrecer 

oportunidades de aprendizaje idóneas a los 
estudiantes?
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Desde la disciplina

Conocimiento del profesor

Conocimiento del profesor
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El profesor debe conocer la disciplina

Conocimiento de la disciplina

Conocimiento del profesor
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El profesor debe saber enseñar

Conocimiento de pedagogía

Conocimiento del profesor
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La unión de los dos conocimientos es suficiente

Conocimiento de pedagogíaConocimiento de la disciplina

Conocimiento del profesor
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Implicaciones en el diseño de la formación del profesor

Cursos de pedagogíaCursos que abordan diversos
temas de la disciplina

Cursos que se ofrecen en
la universidad

‣ Precálculo
‣ Cálculo 1
‣ Cálculo 2
‣ Álgebra lineal

‣ Currículo y pedagogía
‣ Teorías de aprendizaje
‣ Modelos de enseñanza
‣ Gestión institucional

Dificultades para la práctica del profesor

Conocimiento disciplinar y pedagogía



Contenido de la disciplina: universitario y escolar
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No es el mismo contenido

Temas de las matemáticas
universitarias

‣ Precálculo
‣ Cálculo 1
‣ Cálculo 2
‣ Álgebra lineal

Temas de las matemáticas
escolares

‣ Aritmética de 
números enteros
‣ Fracciones
‣ Magnitudes y medidas
‣ Proporcionalidad

Contenido de la disciplina: universitario y escolar
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Tres supuestos

Temas de las matemáticas
universitarias

‣ Precálculo
‣ Cálculo 1
‣ Cálculo 2
‣ Álgebra lineal

Temas de las matemáticas
escolares

‣ Aritmética de 
números enteros
‣ Fracciones
‣ Magnitudes y medidas
‣ Proporcionalidad

‣ Para enseñar las matemáticas escolares, es 
necesario (¿y suficiente?) conocer las matemáticas 
universitarias

‣ Las matemáticas escolares son sencillas
‣ El profesor conoce las matemáticas escolares 

porque las estudió en el colegio

Supuestos de transferencia a la práctica docente
‣ El profesor puede transferir su conocimiento disciplinar 

universitario para “manejar” el contenido escolar
‣ El profesor puede transferir su conocimiento curricular y 

pedagógico general para “manejar” el aprendizaje y la enseñanza 
de temas concretos
‣ Por ejemplo,
‣Del conocimiento de teorías de aprendizaje

‣ Al aprendizaje y enseñanza de temas concretos
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Un conocimiento específico del profesor

Conocimiento pedagógico de contenido

Shulman (1987)

“El conocimiento pedagógico de contenido … 
representa la mezcla de contenido y pedagogía en 
la comprensión de cómo se organizan, representan 

y adaptan temas, problemas o cuestiones 
particulares a los diversos intereses y capacidades 
de los estudiantes y cómo se presentan para la 

instrucción” (p. 8).
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Ideas clave
‣ Múltiples interpretaciones y críticas diversas
‣ Dos ideas clave
‣Conocimiento para transformar el contenido para la enseñanza y el 

aprendizaje

‣ Especificidad a temas, cuestiones, problemas concretos
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Interpretaciones en ciencias
Morine-Dershimer y Kent (2001)

Conocimiento pedagógico de contenido

 Categorías que contribuyen al conocimiento 
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Valoración de
procedimientos
Evaluación de

resultados
------------------

Fines educativos,
metas,

objetivos
y valores

Conocimiento
pedagógico

Conocimiento
curricular

Conocimiento
de contenido

Conocimiento
pedagógico
de contenido 

Conocimiento
del aprendizaje

y de los
aprendices

Conocimiento
de contextos
específicos

Conocimiento de
contextos educativos

generales

Facetas del conocimiento pedagógico 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Modelos y
estrategias

instruccionales

Gestión y
organización

de clase

Discurso y
comunicación

en el aula

Conocimiento
pedagógico

general

Reflexión

Conocimiento
pedagógico
específico al

contexto

Conocimiento
pedagógico

personal

Creencias y
percepciones

personales

Experiencia
práctica
personal

Interpretaciones en matemáticas
Matemáticas para la enseñanza

Deborah Ball y colaboradores (Universidad de Michigan)

Conocimiento pedagógico de contenido
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Conocimiento temático de contenido Conocimiento pedagógico de contenido

Conocimiento
común de
contenido

Conocimiento y la habilidad matemática que se espera que tenga cualquier 
adulto educado. Esta categoría involucra las siguientes capacidades del profesor 
de matemáticas: reconocer respuestas erradas, identificar definiciones inexactas 
en los libros de texto, utilizar correctamente la notación y realizar las tareas que 

le asignan a sus alumnos.
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Conocimiento temático de contenido Conocimiento pedagógico de contenido

Conocimiento
común de
contenido

Conocimiento
especializado de

contenido

Conocimiento y la habilidad matemática que el profesor requiere en su trabajo 
y qué va más allá de aquel de un adulto educado. Esta categoría involucra las 

siguientes capacidades del profesor de matemáticas: analizar los errores de los 
estudiantes y evaluar ideas alternativas, presentar explicaciones matemáticas y 

usar representaciones matemáticas, actuar explícitamente con respecto al 
lenguaje y las prácticas matemáticas
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Conocimiento temático de contenido Conocimiento pedagógico de contenido

Conocimiento
común de
contenido

Conocimiento
especializado de

contenido

Conocimiento del
contenido y

de los estudiantes

Conocimiento con el que se espera que el profesor sea capaz de anticipar los 
errores y las concepciones erradas más comunes, interpretar el pensamiento 
incompleto de los estudiantes y predecir las actuaciones de los estudiantes a 

tareas matemáticas específicas
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Conocimiento temático de contenido Conocimiento pedagógico de contenido

Conocimiento
común de
contenido

Conocimiento
especializado de

contenido

Conocimiento del
contenido y

de los estudiantes

Conocimiento del
contenido y

de la enseñanza

Conocimiento con el que se espera que el profesor sea capaz de diseñar 
secuencias de instrucción, reconocer las ventajas y desventajas de diferentes 

representaciones y enfatizar cuestiones matemáticas relevantes al responder a 
los estudiantes
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Conocimiento
común de
contenido

Conocimiento
especializado de

contenido

Conocimiento del
contenido y

de los estudiantes

Conocimiento del
contenido y

de la enseñanza

Interpretaciones en matemáticas: un ejemplo

Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows 
mathematics well enough to teach third grade, and how can we decide? American Educator, 
29(1), 14-46.

Conocimiento pedagógico de contenido



43

Situación

began a close examination of the actual work of teaching ele-
mentary school mathematics, noting all of the challenges in
this work that draw on mathematical resources, and then we
analyzed the nature of such mathematical knowledge and
skills and how they are held and used in the work of teach-
ing. From this we derived a practice-based portrait of what
we call “mathematical knowledge for teaching”—a kind of
professional knowledge of mathematics different from that
demanded by other mathematically intensive occupations,
such as engineering, physics, accounting, or carpentry. We
then rigorously tested our hypothesis about this “profes-
sional” knowledge of mathematics, first by generating spe-
cial measures of teachers’ professional mathematical knowl-
edge and then by linking those measures to growth in stu-
dents’ mathematical achievement. We found that teachers
who scored higher on our measures of mathematical knowl-
edge for teaching produced better gains in student achieve-
ment. This article traces the development of these ideas and
describes this professional knowledge of mathematics for
teaching.

What Does It Mean To Know
Mathematics for Teaching?
Every day in mathematics classrooms across this country,
students get answers mystifyingly wrong, obtain right an-
swers using unconventional approaches, and ask questions:
Why does it work to “add a zero” to multiply a number by
ten? Why, then, do we “move the decimal point” when we
multiply decimals by ten? And is this a different procedure
or different aspects of the same procedure—changing the
place value by one unit of ten? Is zero even or odd? What is
the smallest fraction? Mathematical procedures that are au-
tomatic for adults are far from obvious to students; distin-
guishing between everyday and technical uses of terms—
mean, similar, even, rational, line, volume—complicates
communication. Although polished mathematical knowl-
edge is an elegant and well-structured domain, the mathe-
matical knowledge held and expressed by students is often
incomplete and difficult to understand. Others can avoid
dealing with this emergent mathematics, but teachers are in
the unique position of having to professionally scrutinize,
interpret, correct, and extend this knowledge.

Having taught and observed many mathematics lessons
ourselves, it seemed clear to us that these “classroom prob-
lems” were also mathematical problems—but not the kind
of mathematical problems found in the traditional disci-
plinary canons or coursework. While it seemed obvious that
teachers had to know the topics and procedures they
teach—factoring, primes, equivalent fractions, functions,
translations and rotations, and so on—our experiences and
observations kept highlighting additional dimensions of the
knowledge useful in classrooms. In keeping with this obser-
vation, we decided to focus our efforts on bringing the na-
ture of this additional knowledge to light, asking what, in
practice, teachers need to know about mathematics to be
successful with students in classrooms.

To make headway on these questions, we have focused on
the “work of teaching” (Ball, 1993; Lampert, 2001). What

do teachers do in teaching mathematics, and in what ways
does what they do demand mathematical reasoning, insight,
understanding, and skill? Instead of starting with the cur-
riculum they teach, or the standards for which they are re-
sponsible, we have been studying teachers’ work. By “teach-
ing,” we mean everything that teachers do to support the in-
struction of their students. Clearly we mean the interactive
work of teaching lessons in classrooms, and all the tasks that
arise in the course of that. But we also mean planning those
lessons, evaluating students’ work, writing and grading as-
sessments, explaining class work to parents, making and
managing homework, attending to concerns for equity, deal-
ing with the building principal who has strong views about
the math curriculum, etc. Each of these tasks involves
knowledge of mathematical ideas, skills of mathematical rea-
soning and communication, fluency with examples and
terms, and thoughtfulness about the nature of mathematical
proficiency (Kilpatrick, Swafford, and Findell, 2001). 

To illustrate briefly what it means to know mathematics
for teaching, we take a specific mathematical topic—multi-
plication of whole numbers. One aspect of this knowledge is
to be able to use a reliable algorithm to calculate an answer.
Consider the following multiplication problem:

Most readers will remember how to carry out the steps of
the procedure, or algorithm, they learned, resulting in the
following:

Clearly, being able to multiply correctly is essential
knowledge for teaching multiplication to students. But this
is also insufficient for teaching. Teachers do not merely do
problems while students watch. They must explain, listen,
and examine students’ work. They must choose useful mod-
els or examples. Doing these things requires additional
mathematical insight and understanding.

Teachers must, for example, be able to see and size up a
typical wrong answer:

Recognizing that this student’s answer as wrong is one step,
to be sure. But effective teaching also entails analyzing the
source of the error. In this case, a student has not “moved
over” the 70 on the second line.

! 35
! 25

! 175
70

245

1
2

! 35
! 25

! 175
70

875

! 35
! 25

FALL 2005 AMERICAN FEDERATION OF TEACHERS 17

(Continued on page 20)

 
Reprinted with permission from the Fall 2005 issue of American Educator, 
  the quarterly journal of the American Federation of Teachers, AFL-CIO.

44

Saber resolverlo

began a close examination of the actual work of teaching ele-
mentary school mathematics, noting all of the challenges in
this work that draw on mathematical resources, and then we
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Reconocer una respuesta errada

began a close examination of the actual work of teaching ele-
mentary school mathematics, noting all of the challenges in
this work that draw on mathematical resources, and then we
analyzed the nature of such mathematical knowledge and
skills and how they are held and used in the work of teach-
ing. From this we derived a practice-based portrait of what
we call “mathematical knowledge for teaching”—a kind of
professional knowledge of mathematics different from that
demanded by other mathematically intensive occupations,
such as engineering, physics, accounting, or carpentry. We
then rigorously tested our hypothesis about this “profes-
sional” knowledge of mathematics, first by generating spe-
cial measures of teachers’ professional mathematical knowl-
edge and then by linking those measures to growth in stu-
dents’ mathematical achievement. We found that teachers
who scored higher on our measures of mathematical knowl-
edge for teaching produced better gains in student achieve-
ment. This article traces the development of these ideas and
describes this professional knowledge of mathematics for
teaching.

What Does It Mean To Know
Mathematics for Teaching?
Every day in mathematics classrooms across this country,
students get answers mystifyingly wrong, obtain right an-
swers using unconventional approaches, and ask questions:
Why does it work to “add a zero” to multiply a number by
ten? Why, then, do we “move the decimal point” when we
multiply decimals by ten? And is this a different procedure
or different aspects of the same procedure—changing the
place value by one unit of ten? Is zero even or odd? What is
the smallest fraction? Mathematical procedures that are au-
tomatic for adults are far from obvious to students; distin-
guishing between everyday and technical uses of terms—
mean, similar, even, rational, line, volume—complicates
communication. Although polished mathematical knowl-
edge is an elegant and well-structured domain, the mathe-
matical knowledge held and expressed by students is often
incomplete and difficult to understand. Others can avoid
dealing with this emergent mathematics, but teachers are in
the unique position of having to professionally scrutinize,
interpret, correct, and extend this knowledge.

Having taught and observed many mathematics lessons
ourselves, it seemed clear to us that these “classroom prob-
lems” were also mathematical problems—but not the kind
of mathematical problems found in the traditional disci-
plinary canons or coursework. While it seemed obvious that
teachers had to know the topics and procedures they
teach—factoring, primes, equivalent fractions, functions,
translations and rotations, and so on—our experiences and
observations kept highlighting additional dimensions of the
knowledge useful in classrooms. In keeping with this obser-
vation, we decided to focus our efforts on bringing the na-
ture of this additional knowledge to light, asking what, in
practice, teachers need to know about mathematics to be
successful with students in classrooms.

To make headway on these questions, we have focused on
the “work of teaching” (Ball, 1993; Lampert, 2001). What

do teachers do in teaching mathematics, and in what ways
does what they do demand mathematical reasoning, insight,
understanding, and skill? Instead of starting with the cur-
riculum they teach, or the standards for which they are re-
sponsible, we have been studying teachers’ work. By “teach-
ing,” we mean everything that teachers do to support the in-
struction of their students. Clearly we mean the interactive
work of teaching lessons in classrooms, and all the tasks that
arise in the course of that. But we also mean planning those
lessons, evaluating students’ work, writing and grading as-
sessments, explaining class work to parents, making and
managing homework, attending to concerns for equity, deal-
ing with the building principal who has strong views about
the math curriculum, etc. Each of these tasks involves
knowledge of mathematical ideas, skills of mathematical rea-
soning and communication, fluency with examples and
terms, and thoughtfulness about the nature of mathematical
proficiency (Kilpatrick, Swafford, and Findell, 2001). 

To illustrate briefly what it means to know mathematics
for teaching, we take a specific mathematical topic—multi-
plication of whole numbers. One aspect of this knowledge is
to be able to use a reliable algorithm to calculate an answer.
Consider the following multiplication problem:

Most readers will remember how to carry out the steps of
the procedure, or algorithm, they learned, resulting in the
following:

Clearly, being able to multiply correctly is essential
knowledge for teaching multiplication to students. But this
is also insufficient for teaching. Teachers do not merely do
problems while students watch. They must explain, listen,
and examine students’ work. They must choose useful mod-
els or examples. Doing these things requires additional
mathematical insight and understanding.

Teachers must, for example, be able to see and size up a
typical wrong answer:

Recognizing that this student’s answer as wrong is one step,
to be sure. But effective teaching also entails analyzing the
source of the error. In this case, a student has not “moved
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Reconocer el error

began a close examination of the actual work of teaching ele-
mentary school mathematics, noting all of the challenges in
this work that draw on mathematical resources, and then we
analyzed the nature of such mathematical knowledge and
skills and how they are held and used in the work of teach-
ing. From this we derived a practice-based portrait of what
we call “mathematical knowledge for teaching”—a kind of
professional knowledge of mathematics different from that
demanded by other mathematically intensive occupations,
such as engineering, physics, accounting, or carpentry. We
then rigorously tested our hypothesis about this “profes-
sional” knowledge of mathematics, first by generating spe-
cial measures of teachers’ professional mathematical knowl-
edge and then by linking those measures to growth in stu-
dents’ mathematical achievement. We found that teachers
who scored higher on our measures of mathematical knowl-
edge for teaching produced better gains in student achieve-
ment. This article traces the development of these ideas and
describes this professional knowledge of mathematics for
teaching.

What Does It Mean To Know
Mathematics for Teaching?
Every day in mathematics classrooms across this country,
students get answers mystifyingly wrong, obtain right an-
swers using unconventional approaches, and ask questions:
Why does it work to “add a zero” to multiply a number by
ten? Why, then, do we “move the decimal point” when we
multiply decimals by ten? And is this a different procedure
or different aspects of the same procedure—changing the
place value by one unit of ten? Is zero even or odd? What is
the smallest fraction? Mathematical procedures that are au-
tomatic for adults are far from obvious to students; distin-
guishing between everyday and technical uses of terms—
mean, similar, even, rational, line, volume—complicates
communication. Although polished mathematical knowl-
edge is an elegant and well-structured domain, the mathe-
matical knowledge held and expressed by students is often
incomplete and difficult to understand. Others can avoid
dealing with this emergent mathematics, but teachers are in
the unique position of having to professionally scrutinize,
interpret, correct, and extend this knowledge.

Having taught and observed many mathematics lessons
ourselves, it seemed clear to us that these “classroom prob-
lems” were also mathematical problems—but not the kind
of mathematical problems found in the traditional disci-
plinary canons or coursework. While it seemed obvious that
teachers had to know the topics and procedures they
teach—factoring, primes, equivalent fractions, functions,
translations and rotations, and so on—our experiences and
observations kept highlighting additional dimensions of the
knowledge useful in classrooms. In keeping with this obser-
vation, we decided to focus our efforts on bringing the na-
ture of this additional knowledge to light, asking what, in
practice, teachers need to know about mathematics to be
successful with students in classrooms.

To make headway on these questions, we have focused on
the “work of teaching” (Ball, 1993; Lampert, 2001). What

do teachers do in teaching mathematics, and in what ways
does what they do demand mathematical reasoning, insight,
understanding, and skill? Instead of starting with the cur-
riculum they teach, or the standards for which they are re-
sponsible, we have been studying teachers’ work. By “teach-
ing,” we mean everything that teachers do to support the in-
struction of their students. Clearly we mean the interactive
work of teaching lessons in classrooms, and all the tasks that
arise in the course of that. But we also mean planning those
lessons, evaluating students’ work, writing and grading as-
sessments, explaining class work to parents, making and
managing homework, attending to concerns for equity, deal-
ing with the building principal who has strong views about
the math curriculum, etc. Each of these tasks involves
knowledge of mathematical ideas, skills of mathematical rea-
soning and communication, fluency with examples and
terms, and thoughtfulness about the nature of mathematical
proficiency (Kilpatrick, Swafford, and Findell, 2001). 

To illustrate briefly what it means to know mathematics
for teaching, we take a specific mathematical topic—multi-
plication of whole numbers. One aspect of this knowledge is
to be able to use a reliable algorithm to calculate an answer.
Consider the following multiplication problem:

Most readers will remember how to carry out the steps of
the procedure, or algorithm, they learned, resulting in the
following:

Clearly, being able to multiply correctly is essential
knowledge for teaching multiplication to students. But this
is also insufficient for teaching. Teachers do not merely do
problems while students watch. They must explain, listen,
and examine students’ work. They must choose useful mod-
els or examples. Doing these things requires additional
mathematical insight and understanding.

Teachers must, for example, be able to see and size up a
typical wrong answer:

Recognizing that this student’s answer as wrong is one step,
to be sure. But effective teaching also entails analyzing the
source of the error. In this case, a student has not “moved
over” the 70 on the second line.
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Los errores pueden requerir más análisis
Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Knowing Mathematics
(Continued from page 17)

Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Formas de abordar el error

Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Formas de presentar el algoritmo

Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Formas de presentar el algoritmo

Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Formas de presentar el algoritmo

Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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100, and 600—and shows the factors that produce those
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left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
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Representation involves substantial skill in making these
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tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.
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knowing about students. Nothing implies a particular way
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not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
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be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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causing the error.
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lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.
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Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.

 
Reprinted with permission from the Fall 2005 issue of American Educator, 
  the quarterly journal of the American Federation of Teachers, AFL-CIO.



55

Formas de presentar el algoritmo

Sometimes the errors require more mathematical analysis:

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.4 Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 ! 20, not 35 ! 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001). 

Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 ! 5 (lower right hand corner), 20 ! 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is a further form of mathemati-
cal insight crucial to teaching.

5

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-
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Figure 1.

4 Here the student has likely multiplied 5 ! 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 ! 5 again, yielding 25, rather than
(3 ! 5) " 2 # 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 ! 2 instead of (3 ! 2) " 1 # 7.
5 Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 ! 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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Interpretaciones en matemáticas
Modelo del análisis didáctico: aproximación curricular

Conocimiento pedagógico de contenido

Noción de currículo

57

Conceptual

Cognitiva Formativa

Social

Modelo del análisis didáctico
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De contenido

Cognitivo De instrucción

De actuación

Modelo del análisis didáctico
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De contenido

Cognitivo De instrucción

De actuación
Sistemas de representación

Estructura conceptual Fenomenología

Modelo del análisis didáctico

60

De contenido

Cognitivo De instrucción

De actuación
Expectativas

Limitaciones Hipótesis



Modelo del análisis didáctico
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De contenido

Cognitivo De instrucción

De actuación

Descripción

Análisis Mejora

Tareas
Secuencias de tareas

Modelo del análisis didáctico
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De contenido

Cognitivo De instrucción

De actuación

Recolección

Análisis Mejora

Instrumentos
Procedimientos

¿Qué se espera de un profesor?

Modelo del análisis didáctico

Para un tema concreto, que el profesor sea capaz de
‣ Contenido
‣ Identificar y relacionar conceptos y procedimientos

‣ Identificar y relacionar representaciones

‣ Identificar y relacionar fenómenos que dan sentido al tema

‣ Cognitiva
‣ Formular y caracterizar objetivos de aprendizaje

‣ Relacionarlos con estándares y competencias

‣ Identificar dificultades y errores

‣ Prever la actuación de los estudiantes

64

Para un tema concreto, que el profesor sea capaz de
‣ Instrucción (tareas y secuencias de tareas)
‣Describir

‣ Analizar

‣Mejorar

‣ Actuación (información sobre el diseño y la implementación)
‣ Recoger

‣ Analizar

‣ Establecer estrategias de mejora

65

¿Cómo promover su desarrollo?
Conocimiento teórico, técnico y práctico de los conceptos 

pedagógicos

Conocimiento pedagógico de contenido



Tres tipos de conocimiento de un concepto pedagógico 

‣ Conocimiento teórico
‣Conocer alguna descripción teórica de la noción de tal forma que, por 

ejemplo, sea capaz de distinguir instancias de esa noción con respecto a 
un tema de las matemáticas escolares

‣ Conocimiento técnico
‣Conocer las técnicas necesarias para usar la noción como herramienta 

de análisis de un tema de las matemáticas escolares y producir 
información relevante sobre el tema

‣ Conocimiento práctico
‣Conocer las técnicas necesarias para usar la información obtenida 

sobre el tema para tomar decisiones a la hora de analizarlo con otra 
noción o para el diseño de la unidad didáctica

67 Organizadores	del	currículo

Tres tipos de conocimiento
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¿Cómo promover su desarrollo?
Visión del aprendizaje y estrategias metodológicas

Aprendizaje interdependiente

Conocimiento pedagógico de contenido

Aprendizaje interdependiente
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Aprendizaje

Aprendizaje interdependiente
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Aprendizaje

Trabajo en grupo

Aprendizaje interdependiente
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Aprendizaje

Trabajo en grupo

Negociación de significados



Aprendizaje interdependiente
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Aprendizaje

Trabajo en grupo

Negociación de significados

Observar y criticar
trabajo de otros

Aprendizaje interdependiente

74

Aprendizaje

Trabajo en grupo

Negociación de significados

Reaccionar a críticasObservar y criticar
trabajo de otros

Aprendizaje interdependiente
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Aprendizaje

Tema concreto Desarrollar proyecto
2 años

Trabajo en grupo

Negociación de significados

Reaccionar a críticasObservar y criticar
trabajo de otros

Aprendizaje interdependiente
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Aprendizaje

Tema concreto Desarrollar proyecto
2 años

Trabajo en grupo

Negociación de significados

Reaccionar a críticasObservar y criticar
trabajo de otros

Presentar trabajos
periódicamente

Aprendizaje interdependiente
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Aprendizaje

Tema concreto Desarrollar proyecto
2 años

Trabajo en grupo

Negociación de significados

Reaccionar a críticasObservar y criticar
trabajo de otros

Presentar trabajos
periódicamente

En la formación permanente de profesores

Desafíos



Desafíos
‣ Aprendizaje de los estudiantes
‣ Foco en la práctica docente del profesor

‣ ¿Qué visión de la investigación del profesor?

‣ ¿Qué conocimiento del profesor se promueve?
‣ Interpretaciones del conocimiento pedagógico de contenido

‣ ¿Cómo se contribuye al desarrollo de ese conocimiento?
‣ Visión del aprendizaje del profesor

‣ Implicaciones metodológicas
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