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Abstract

Using Lie geometry and the Lie product in R
n+3, we give an algebraic description of

geometric objects constructed from spheres and planes of dimension n−k, k ≥ 1 in
R

n. We define algebraic invariants, which characterize geometric properties of these
objects, and their position in R

n.

1. Introduction

In Lie geometry, oriented spheres and planes of dimension n − 1 in R
n are described as

points on a quadric surface, called the Lie quadric, in the projective space P
n+2. Geometric

relations like tangency, angle of intersection, power, etc., are described by the Lie product,
which is an indefinite bilinear form on the space R

n+3. Lie geometry enables writing geo-
metric relations in terms of algebraic equations, and is thus an appropriate environment for
automatic solving of geometric constructions and for proving certain geometric theorems.
Lie geometry has been used to study geometric problems on circles for example in [8], [7],
[3]. A thorough treatment of Lie geometry can be found in [1] or [2].

A point, an oriented plane of dimension n−1, or an oriented sphere of dimension n−1 in
R

n is called an oriented geometric cycle. In [4], the existence and properties of solutions of
certain types of geometric constructions on oriented geometric cycles in R

n were analyzed.
In [5], simple algorithms for symbolic solutions of a number of such geometric constructions
using the Apollonius construction and Lie transformations were given. In this paper, we
attempt to generalize this approach to other geometric objects. For example, spheres and
planes of codimension 2 in R

n, which we call geometric subcycles are described triples of
cycles, where the last element of the triple is the special cycle r. On the other hand, a
triple of cycles with the last element equal to the dual special cycle w, determines a cone
in R

n. Both of these constructions - subcycles and cones are specific examples of a general
construction, which is given by a k+1-tuple of cycles, where the first k-cycles are proper,
and the last component is a special cycle which determines the geometric nature of the
object. Certain geometric properties of such objects are determined by the signature of
the Lie from restricted to the subspace spanned by homogeneous coordinates of these
cycles, expressed in appropriate local coordinates.

2. Cycles

We will call an element x ∈ P
n+2 (denoted by a lower case letter) an algebraic cycle (or,

mostly, just a cycle). An algebraic cycle x is given by a nonzero vector of homogeneous
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coordinates X = (X0, . . . , Xn+2) ∈ R
n+3 which we denote by the corresponding capital

letter.

The Lie product on R
n+3 is the indefinite bilinear form with signature (n− 1, 2) given by

(X | Y ) = X0Yn+1 +X1Y1 + · · · +XnYn +Xn+1Y0 −Xn+2Yn+2 = XT AY, (1)

where

A =

⎡
⎢⎢⎣

0 0 1 0
0 I 0 0
1 0 0 0
0 0 0 −1

⎤
⎥⎥⎦ . (2)

The set of vectors X such that (X | X) = 0 determines the Lie quadric

Ω = {x ∈ P
n+2 | (X | X) = 0} ⊂ P

n+2.

Cycles x ∈ Ω will be called proper cycles, while cycles x /∈ Ω will be called non-proper
cycles.

If X1, . . . , Xk are homogeneous coordinate vectors, the symbol 〈X1, . . . , Xk〉 will stand
for the linear subspace spanned by the vectors X1, . . . , Xk ∈ R

n+3, and the symbol
〈X1, . . . , Xk〉⊥ for the orthogonal complement to 〈X1, . . . , Xk〉 with respect to the Lie
product, i.e.

〈X1, . . . , Xl〉⊥ = {Y | (Xi | Y ) = 0, i = 1, . . . , k}.
Following our convention on capital and lowercase letters, 〈x1, . . . , xk〉 and
〈x1, . . . , xk〉⊥ will denote the projective subspace spanned by x1, . . . , xk and its dual pro-
jective subspace respectively.

For any vector S ∈ R
n+3, the open set Us = P

n+2 \ 〈s〉⊥ together with the map

ϕS : Us
∼= 〈S〉⊥ ∼= R

n+2, ϕS(x) =
1

(X | S)
X

is a chart on P
n+2. The collection

{(Us, ϕS) | S ∈ §n+2}

determines an atlas which gives the standard manifold structure on P
n+2. Two cycles

and their corresponding charts have a special role in Lie sphere geometry: the nonproper
cycle r with homogeneous coordinates R = (0, . . . , 0, 1) and the proper cycle w with
homogeneous coordinates W = (1, 0, . . . , 0) which we call the infinite cycle.

An oriented geometric cycle, i.e. an oriented sphere or plane of codimension 1 or a point,
in R

n is represented by a proper algebraic cycle x ∈ Ω ⊂ P
n+2 in the following way.

A point p ∈ R
n is represented by the cycle x ∈ Uw with local coordinates

ϕW (x) = (−‖p‖2/2,p, 1, 0).
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The positively oriented (i.e. outward normal) and negatively oriented sphere with
center p and radius |ρ| > 0 can be represented by the cycles x and x′ in Uw ∩ Ur

with local coordinates

ϕW (x) =

(
ρ2 − ‖p‖2

2
,p, 1, ρ

)
, ϕR(x) =

(
ρ2 − ‖p‖2

2ρ
,
p

ρ
,
1

ρ
, 1

)

ϕW (x′) =

(
ρ2 − ‖p‖2

2
,p, 1,−ρ

)
, ϕR(x′) =

(‖p‖2 − ρ2

2ρ
,−p

ρ
,−1

ρ
, 1

)

respectively.

The plane with normal n, where ‖n‖ = 1, and point q is represented by the cycle
x ∈ Ur with local coordinates

ϕR(x) = (−n · q,n, 0, 1).

On the other hand every proper cycle x, except the infinite cycle w represents an oriented
geometric cycle in R

n. It follows from the equation (X | X) = 0 that Ω ⊂ Uw ∪ Ur. The
complement

Ω \ Uw = {x ∈ Ω | (X | W ) = 0} ⊂ Ur

consists of cycles representing planes and the infinite cycle w, while the complement

Ω \ Ur = {x ∈ Ω | (X | R) = 0} ⊂ Uw,

consists of cycles representing points in R
n and the infinite cycle w. A change of sign of

the last homogeneous coordinate of a cycle x ∈ Ω, produces the reoriented cycle x′ ∈ Ω
representing the same nonoriented geometric cycle with the opposite orientation. Points
have only one possible orientation. If x is a point, then x′ = x.

Remark 1. Spheres and planes in R
n correspond through the stereographic projection to

spheres in Sn+1, and in this setting, the cycle w is the representation of the pole in Sn+1.

Motivated by the geometric background we will use the following notation. The compo-
nents of the vectors of homogeneous coordinates will be denoted byX = (Xυ, Xp, Xω, Xρ),
where Xυ, Xω, Xρ ∈ R and Xp ∈ R

n. Thus, in the chart Uw where Xω = 1, the last co-
ordinate Xρ determines the radius ρ = |Xρ| and the orientation of the sphere associated
to x and Xp is its center, and in the chart Ur where Xρ = 1, the coordinate Xω is the
curvature of the geometric cycle associated to x.

If x is any proper cycle, then the vector of homogeneous coordinates

Xr = X + (X | R)R ∈ 〈R〉⊥

represents the Möbius coordinates of the non-oriented geometric cycle determined by x,
and the product (Xr|Xr) corresponds to the Möbius product [2]. In Möbius geometry
a non-oriented sphere or plane in R

n is represented by a point in P
n+1. The projection

173



Memorias XVI encuentro de geometra y IV de aritmtica

from Ω to P
n+1 corresponds to assigning to an oriented geometric cycle the underlying

non-oriented one. If x ∈ Ω then

(X | X) = (Xr | Xr) − (Xρ)
2 = 0 so (Xr | Xr) = (Xρ)

2. (3)

A crucial property of the Lie product on homogeneous coordinates is that it tells us when
two cycles are tangent with compatible orientations.

Proposition 1. Let x1 and x2 be proper cycles such that (X1 | X2) = 0. If one of the
cycles, for example x1, is a point cycle then it lies on x2. If both x1 and x2 are non-point
cycles then they are tangent with compatible orientations. If both are planes then this
means that they are parallel with compatible orientations.

The proof of this proposition amounts to simple geometric verifications, and can be found
for example in [2].

We will see in the following sections that the Lie product of homogeneous coordinate
vectors reflects several other geometric properties of the corresponding pair of cycles.

3. Families of cycles

As we have seen, a proper cycle x ∈ Ω ⊂ P
n+2 represents an oriented geometric cycle in

R
n. A family of proper cycles thus represents a family of oriented geometric cycles, which

determine new geometric objects. For example, two intersecting geometric cycles deter-
mine a subcycle, i.e. a cycle of codimension 2 in R

n, and two spheres can determine the
common tangent cone in R

n. On the algebraic side, a family of cycles x1, . . . , xk spans the
projective subspace 〈x1, . . . , xn〉 ⊂ P

n+2. This subspace can be projected onto Ω in diffe-
rent directions which are determined by a further cycle s. The projection 〈x1, . . . , xn, s〉∩Ω
determines a k − 1-parametric family of proper cycles, which is the algebraic encoding of
the corresponding family of geometric cycles. For example, if x, y represent intersecting
cycles and s = r, then 〈x, y, r〉 ∩Ω determines the Steiner pencil spanned by x and y, i.e.
the family of all geometric cycles intersecting in a common subcycle, and 〈x, y, r〉⊥ ∩ Ω
determines the family of points forming this subcycle. Similarly, if x and y are spheres
with a common tangent cone, then 〈x, y, w〉∩Ω determines all cycles tangent to this cone,
and 〈x, y, w〉⊥ ∩ Ω is the collection of the common tangent planes.

In the following sections we will discuss in what way algebraic properties of the subspaces
〈x1, . . . , xn, s〉 ⊂ P

n+2 determine the geometric properties of the corresponding geometric
object in R

n. In this section we will define some such algebraic properties. For us, the
most important such property is the signature of the restriction of the Lie form,

Let X1, . . . , Xk ∈ R
n+3 be a k-tuple of linearly independent vectors, and let

X = [X1, . . . , Xk] denote the k × (n + 3) matrix with columns X1, . . . , Xk,. The Lie
form, restricted to the subspace 〈X1, . . . , Xk〉, is given by the k × k matrix

AX = XT AX.

The determinant of this matrix will be denoted by

det(AX) = Δ(X) = Δ(X1, . . . , Xn). (4)
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The sign of Δ(X) depends on the signature of the Lie form on the subspace 〈X1, . . . , Xk〉,
and is an invariant of this subspace, independent of the choice of basis.

Proposition 2. Let 0 < k < n + 2 and let X = [X1, . . . , Xk] be such that Δ(X) < 0.
Then

〈x1, . . . , xk〉⊥ ∩ Ω �= ∅.

Demostración. Since Δ(X) < 0, the Lie form on 〈X1, . . . , Xk〉 and on the complement
〈X1, . . . , Xk〉⊥ is nondegenerate, and

R
n+3 = 〈X1, . . . , Xk〉 ⊕ 〈X1, . . . , Xk〉⊥

(compare [2, Theorem 1.2]). Let Y1, . . . , Yn+3−k be a basis of 〈X1, . . . , Xk〉⊥, and
Z = (X1, . . . , Xk, Y1, . . . , Yn+3−k). Then

Δ(Z) = Δ(X)Δ(Y) > 0,

so Δ(Y) < 0, and the Lie form restricted to 〈X1, . . . , Xk〉⊥ is indefinite (in fact it has
signature (n + 3 − k, 1)). But then there exists a vector U ∈ 〈X1, . . . , Xk〉⊥ such that
(U | U) = 0, and so u ∈ Ω.

We will use mostly determinants in which one vector S ∈ R
n+3 has a special role, so it

is reasonable to introduce a new notation: for any k-tuple of cycles with homogeneous
coordinates X1, . . . , Xk, the (k + 1) × (k + 1) determinant

Δ(X1, . . . , Xk, S) = det([X1, . . . , Xk, S]TA[X1, . . . , Xk, S]) (5)

will be called the S-determinant of the k-tuple X1, . . . , Xk.

In the case k = 1, the S-determinant of the homogeneous coordinates X of a single proper
cycle x ∈ Ω is

Δ(X,S) =

∣∣∣∣ 0 (S | X)
(X | S) (S | S)

∣∣∣∣ = −(X | S)2. (6)

In particular, if x ∈ Us, then Δ(ϕS(x), S) = −1.

The two canonical choices for S will be S = R, and S = W . For example, by Proposition
2 it follows that:

Corollary 1. Two geometric cycles, described by algebraic cycles x, y intersect if
Δ(X, Y,R) ≤ 0, and have a common tangent plane is Δ(X, Y,W ) ≤ 0.

Let us compute some examples of R and W determinants.

1. The R-determinant of a single proper cycle x ∈ Uw in the local coordinates of Uw

equals
Δ(ϕW (x), R) = −(ϕW (x) | R)2 = −ρ2

where ρ is the radius of the sphere represented by x.
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2. The R-determinant of a pair of homogeneous coordinate vectors X1, X2 of proper
cycles x1, x2 ∈ Ω is

Δ(X1, X2, R) =

∣∣∣∣∣∣
0 (X1 | X2) −X1ρ

(X1 | X2) 0 −X2ρ

−X1ρ −X2ρ −1

∣∣∣∣∣∣
= (X1 | X2)((X2 | X1) + 2X1ρX2ρ)

= ((Xr
1 | Xr

2) −X1ρX2ρ)((X
r
1 | Xr

2) +X1ρX2ρ)

= (X1 | X2)(X1 | X ′
2)

where x′2 is there oriented cycle x2.

3. Let x1, x2 ∈ Ur ∩Ω represent intersecting non-point cycles. If both of the cycles are
spheres, then, by the law of cosines,

(ϕR(x1)
r | ϕR(x2)

r) =
‖p1 − p2‖2 − ρ2

1 − ρ2
2

2ρ1ρ2
= cosψ

where ψ is the angle of intersection of the two spheres.

Similarly, if one of the cycles is a plane,

(ϕR(x1)
r | ϕR(x2)

r) =
np− q

ρ
= cosψ,

where q is a point of intersection, and if both cycles are planes

(ϕR(x1)
r | ϕR(x2)

r) = n1n2 = cosψ.

So in any case

Δ(ϕR(x1), ϕR(x2), R) = (ϕR(x1)
r | ϕR(x2)

r)2 − 1 = cos2 ψ − 1 = − sin2 ψ,

4. If x1, x2 ∈ Uw ∩ Ω are intersecting spheres then ϕW (xi) = ρiϕR(xi), so

Δ(ϕW (x1), ϕW (x2), R) = −ρ2
1ρ

2
2 sin2 ψ = −4a2,

where a is the area of the triangle with vertices p1,p2, and q, and q is a point in
the intersection.

5. Let x1, x2 ∈ Uw ∩ Ω be proper non-plane cycles. Then

Δ(ϕW (x1), ϕW (x2),W ) = (ρ1 − ρ2)
2 − ‖p1 − p2‖2.

If this is negative, then the two geometric spheres either intersect or one lies in the
exterior of the other. A common tangent plane exists and

Δ(ϕW (x1), ϕW (x2),W ) = −P 2

where P is the tangential distance. If it is positive, then one sphere lies in the interior
of the second one, and the geometric meaning of

Δ(ϕW (x1), ϕW (x2),W )

is, at least in our situation, less relevant.
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6. Let x1, x2, y ∈ Ur ∩Ω be proper non-point cycles, and let the geometric cycles given
by x1 and x2 intersect orthogonally. If Xi = ϕR(xi), i = 1, 2 and Y = ϕR(y) then
(X1 | X2) = −1 and

Δ(X1, X2, Y, R) =

∣∣∣∣∣∣∣∣

0 −1 (X1 | Y ) 1
−1 0 (X2 | Y ) 1

(Y | X1) (Y | X2) 0 1
1 1 1 −1

∣∣∣∣∣∣∣∣
= 1 + 2(X1 | Y ) + (X1 | Y )2 + 2(X2 | Y ) + (X2 | Y )2

= ((X1 | Y ) + 1)2 + ((X2 | Y ) + 1)2 − 1

= (Xr
1 | Y r)2 + (Xr

2 | Y r)2 − 1

= Δ(ϕR(x1), ϕR(x2), ϕR(y), R)

= cos2 ψ1 + cos2 ψ2 − 1,

where ψ1 and ψ2 are the angles of intersection between x1 and y, and x2 and y,
respectively.

Another important algebraic tool which we will use is the Lie orthogonal projection on-
to the subspace 〈x1, . . . , xk, s〉. Given a k-tuple of vectors X = [X1, . . . , Xk] such that
Δ(X) �= 0, the Lie-orthogonal projection

PX : R
n+3 → 〈X1, . . . , Xk〉 ⊂ R

n+3

is given by
PXY = XA−1

X XTAY (7)

To see that this really is the projection we have to check that it is idempotent:

P 2
X = (XA−1

X XT A)(XA−1
X XT A) = XA−1

X AXA−1
X XT A = PX,

and that it is the identity on the subspace 〈X1, . . . , Xk〉, i.e. PXX = X, and maps the
orthogonal subspace 〈X1, . . . , Xk〉⊥ to 0, which follows directly from (7).

Since PX depends only on the subspace spanned by X and not on the vectors them-
selves, we will use the notation PX⊥ for the projection onto the the orthogonal subspace
〈X1, . . .Xk〉⊥. Clearly, PX⊥ = Id − PX. The projective map determined by PX will be
denoted by

Px : P
n+2 \ 〈x1, . . . , xk〉⊥ → P

n+2.

If x is a single cycle, the condition Δ(X) �= 0 is reduced to (X | X) �= 0. The projection
〈X〉 is therefore defined only for vectors representing non-proper cycles x, and is given by

PX(Y ) =
(X | Y )

(X | X)
X.

The corresponding projective map is not very interesting, since it is the constant map

Px : P
n+2 \ {〈x〉⊥} → {x}.
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The dual projection Px⊥ : P
n+2 \ 〈x〉 → 〈x〉⊥ is interesting, though. It is given by

PX⊥Y = Y − (X | Y )

(X | X)
X.

For example, the projection Pr⊥ is given by

PR⊥Y = Y +
(R | Y )

R
.

If a vector y is a proper cycle, then

PR⊥Y = Y r = Y + (Y | R)

is a vector of homogeneous Möbius coordinates of this cycle.

We will often use the following algebraic result.

Proposition 3. Let X = [X1, . . . , Xk], Y = [Y1, . . . , Ym]. Then

Δ(X1, . . . , Xk, Y1, . . . , Ym) = Δ(Y)Δ(PY⊥X).

Demostración.

Δ(Z) =

∣∣∣∣ XTAX XT AY
YT AX YT AY

∣∣∣∣
= det(XT AX) det(YT AY − YT AX(XT AX)−1XTAY)

= Δ(X) det(YT APX⊥Y)

= Δ(X) det((PX⊥Y)T APX⊥Y)

= Δ(X)Δ(PX⊥Y)

4. Pencils

Given a cycle s ∈ P
n+2 , a geometric s-pencil is a 1-parametric family of geometric cycles

given by

〈x1, x2, s〉 ∩ Ω, (8)

where x1, x2 ∈ Ω and the vectors {X1, X2, S} are linearly independent. The dual geometric
object

x⊥
s := 〈X1, X2, S〉⊥ ∩ Ω

is an s-copencil.

The matrix [X1, X2, S] with columns spanning an s-pencil thus has rank 3, and deter-
mines an oriented algebraic s-pencil which we denote by xs and which contains all cycles
belonging to (8), while orientation is induced by the ordering of the pair (x1, x2).
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An s-pencil is always nonempty since it contains at least the two spanning cycles x1 and
x2. An s-copencil can be empty, can contain a single cycle, or an infinite number of cycles.
The cycle s determines the type of cycles which constitute an s-copencil. For example, an
r-copencil contains points and a w-copencil contains planes.

In the case of s-pencils, Proposition 2 can be improved in the following way.

Proposition 4. Let x1, x2 ∈ Ω span an s-pencil xs. The corresponding s-copencil is empty
if and only if Δ(X1, X2, S) > 0.

If Δ(X1, X2, S) = 0, then there exists a proper cycle yω such that (Y | X) = 0 for all xs.

Demostración. The case Δ(X1, X2, S) < 0 is considered in proposition 2. In the case
Δ(X1, X2, S) = 0, there exists a nonzero vector Y = αX1 +βX2 +γS ∈ 〈X1, X2, S〉 which
is a solution of the system

(X1 | Y ) = 0, (X2 | Y ) = 0, (S | Y ) = 0.

Every such solution obviously also satisfies the conditions

(Y | X) = (Y | αX1 + βX2 + γS) = 0

for all X ∈ 〈X1, X2, S〉. In particular, (Y | Y ) = 0, so y is an element of the corresponding
s-copencil.

Finally, let Δ(X1, X2, S) > 0. Since x1, x2 ∈ Ω, the Lie form, restricted to 〈X1, X2, S〉
has signature (p, q), where q is at least 1. Since Δ(X1, X2, S) > 0, it must be equal to
2. The Lie form restricted to the complement 〈X1, X2, S〉⊥ is thus positive definite, so
(Y | Y ) > 0 for all y ∈ 〈x1, x2, s〉⊥ and the s-copencil is empty.

A pencil is called hyperbolic if its determinant Δ(X1, X2, S) is negative, parabolic if it is
equal to 0 and elliptic if it is positive. In view of the above proposition, we will mostly
be interested in hyperbolic and parabolic pencils, where the corresponding copencil is
nonempty, and determines new geometric objects.

Let us take a closer look at our two canonical examples S = R and S = W .

An oriented r-pencil xr is a 1-parametric family of cycles given by

〈x1, x2, r〉 ∩ Ω

and oriented by the ordered pair (x1, x2). If xr is either hyperbolic or parabolic then, by
Proposition 4, the r-copencil x⊥

r is nonempty. It consists of point cycles which represent
points in R

n in the intersection of all geometric cycles of the pencil.

If xr is a parabolic r-pencil then, by Proposition 4, there exists a cycle y ∈ xr ∩x⊥
r so the

geometric r-pencil contains a point which is the common intersection of all cycles of the
pencil. A parabolic r-pencil thus determines a point in R

n.

If xr is hyperbolic then xr ∩ x⊥
r = ∅, so the pencil contains no point cycles. The corres-

ponding r-copencil consists of point cycles lying in the intersection of all cycles of xr. The
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union of all such points is a geometric subcycle, that is a sphere or plane of codimension 2.
The latter happens when all cycles in the pencil are planes, i.e. when xr ⊂ 〈w〉⊥. On the
other hand, if at least one cycle from the pencil is a sphere, the subcycle is a codimension
2 sphere. The subcycle is oriented in the usual way by the orientations of the geometric
cycles given by x1 and x2 and by the order in which they appear.

An oriented w-pencil xr is a 1-parametric family of cycles given by

〈x1, x2, w〉 ∩ Ω

and oriented by the ordered pair (x1, x2). The corresponding w-copencil x⊥
w consists of

cycles representing planes in R
n which are tangent to all geometric cycles of the pencil.

A parabolic w-pencils is spanned by two cycles x1, x2 such that 〈X1, X2〉 contains W . The
geometric pencil contains a plane which is the one common tangent plane of all cycles of
the pencil. A parabolic w-pencil thus determines a plane in R

n.

If xr is hyperbolic then xw ∩x⊥
w = ∅, so the pencil contains no planes. The corresponding

w-copencil consists of all common tangent planes of cycles in the pencil, and the points
of tangency form a cone in R

n. There is one exceptional cases. When all cycles in the
pencil are points, i.e. when xw ⊂ 〈r〉⊥, the pencil xw represents a line in R

n, and the
corresponding cone degenerate to this line.
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