GEOMETRÍA AFÍN Y TOPOLOGÍA DEL PRISMATOIDE PENTAGONAL

Luis-Enrique Ruiz-Hernández Universidad Pedagógica y Tecnológica de Colombia leruizh@yahoo.es

Si \mathcal{P} es el prismatoide pentagonal, se investiga la geometría y topología de f (\mathcal{P}), donde f es un automorfismo afín de \mathbb{R}^3 , introduciendo una norma φ sobre \mathbb{R}^3 , respecto a la cual f (\mathcal{P}) es una esfera. La representación unificada de φ en términos de tres vectores linealmente independientes en \mathbb{R}^3 (con la inefable presencia del número de oro), permite, en particular, describir a \mathcal{P} como un lugar geométrico cuyos puntos satisfacen ciertas condiciones de proyección ortogonal sobre las rectas perpendiculares a pares de caras opuestas de \mathcal{P} a través de sus centros. Al abordar la estereometría del sólido afín, se encuentra una representación del circunelipsoide y el volumen de f (\mathcal{P}), aplicando un importante resultado de las transformaciones afines. Específicamente se obtiene el volumen de \mathcal{P} en términos de su arista.

INTRODUCCIÓN

Por una ligera distorsión del prisma pentagonal recto de bases regulares, obtenemos un dodecaedro convexo de dos caras pentagonales regulares y paralelas, conectadas por 10 triángulos isósceles. La altura del poliedro siempre puede ajustarse de tal manera que los triángulos isósceles sean equiláteros. Entonces el sólido así obtenido (de caras regulares) recibe el nombre de antiprisma (prismatoide, prismoide o prisma oblicuo) pentagonal (ver Figura 1).

No hay hasta el presente un estudio, diferente al clásico, del prismatoide pentagonal que aporte una nueva concepción sobre su geometría. Razón por la cual, en este documento, se emprende y se pone de manifiesto, la existencia de una metodología que abre nuevos caminos en esa dirección.

En efecto, articulando profusamente nociones de análisis funcional y convexo, se concibe un marco conceptual que permite abordar la topología y geometría afín del sólido. En general, se indaga sobre el prismatoide pentagonal afín \mathscr{P} (ver Definición 1.1 y Figura 3), introduciendo una norma φ sobre \mathbb{R}^3 respecto a la cual \mathscr{P} es una esfera (Teoremas 1.3 y 2.1). La representación de φ se da en términos de tres vectores linealmente independientes en \mathbb{R}^3 , con la inefable presencia del número de oro (Lema 1.2). Se construye así un modelo matemá-

Ruiz-Hernández, L.E. (2011). Geometría afín y topología del prismatoide pentagonal. En P. Perry (Ed.), *Memorias del 20° Encuentro de Geometría y sus Aplicaciones* (pp. 99-118). Bogotá, Colombia: Universidad Pedagógica Nacional.

tico, riguroso y versátil, que unifica y describe minuciosamente la geometría de \mathcal{P} . El caso notable en que \mathcal{P} es un prismatoide pentagonal es tratado en el Corolario 3.2. Posteriormente veremos cómo la ilustración 2.2 permite avizorar el alcance de estos resultados.

Más adelante se aportan dos representaciones del prismatoide pentagonal en términos de los centros de seis caras no paralelas, como también en términos de las rectas perpendiculares a esas caras a través de sus centros (Corolario 3.1). Así, se describe (vía proyecciones ortogonales) el prismatoide pentagonal como un lugar geométrico de puntos en \mathbb{R}^3 , resultado hasta hoy desconocido.

Finalmente se estudian algunos aspectos relevantes de la estereometría de \mathcal{P} , y en particular, aplicando una importante propiedad de las transformaciones afines, se calcula el volumen de \mathcal{P} (Teorema 4.1).

Denotaremos con letra mayúscula los puntos o vectores (fila) de \mathbb{R}^3 , su producto interior usual por un punto \cdot y el producto vectorial con una cruz x.

El Lema 1.2, los Teoremas 1.3, 2.1 y 4.1, como los Corolarios 3.1 y 3.2, consignados en la presente investigación son originales. Constituyen aportes concebidos y demostrados por el autor.

1. GEOMETRÍA Y TOPOLOGÍA DEL PRISMATOIDE PENTAGONAL AFÍN

1.1. Definición. Un prismatoide (o prismoide o antiprisma o prisma oblicuo) pentagonal afín, es la imagen de un prismatoide pentagonal bajo un automorfismo afín de \mathbb{R}^3 (ver Figuras 1 y 3).

Figura 1. El prismatoide pentagonal V₁... V₁₀ de centro $G' = \frac{1}{2} (V_i + V_{i+5})$, i=1,...,5

De manera similar se define pentágono regular afín. El número

(1.1.1)
$$\tau = 2\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{2} = 1,6180339887....$$

fue llamado por los griegos el número de oro, y es la raíz positiva de la ecuación cuadrática

(1.1.2)
$$\tau^2 - \tau - 1 = 0$$

(Coxeter, 1989, pp. 160-168; Fuentes, 1991, pp. 19-38).

Es un hecho singular que en el pentágono regular, cada diagonal es paralela al lado opuesto y es τ veces dicho lado. Dado que las transformaciones afines preservan las combinaciones lineales promedio (la suma de cuyos coeficientes es 1) (Birkhoff y MacLane, 1970, pp. 417-423), entonces la propiedad anterior se mantiene en el pentágono regular afin V₁...V₅. En otras palabras

(1.1.3)
$$V_4 = V_1 - \tau V_2 + \tau V_3$$
 $V_5 = \tau V_1 - \tau V_2 + V_3$

(ver Figura 2).

Figura 2. V₁... V₅ es un pentágono regular afín, en el cual $\overline{V_1V_3} \| \overline{V_5V_4} \text{ y V}_1V_3 = \tau V_5V_4$

1.2. Lema. Sean A, B y C tres vectores dados en \mathbb{R}^3 , linealmente independientes, y hagamos

$$(1.2.1) \begin{cases} \Lambda_{k} = \frac{1}{2} \left\{ (5-2\tau)k + 8\tau - 15 - 3\tau^{-2} | k-2 | -2\tau^{-3} | k-3 | -3\tau^{-2} | k-4 | + (5-2\tau) | k-5 | -4 + \frac{1}{2} \left\{ -3\tau^{-1} k + 8\tau - 9 + \sqrt{5}\tau^{-2} | k-2 | -\tau^{-3} | k-3 | + 2\tau^{-1} | k-4 | -2\tau^{-1} | k-5 | \right\} B + \frac{1}{2} \left\{ (2-3\tau) k + 12\tau - 8 + 2\tau^{-1} | k-2 | -\tau^{-3} | k-3 | + \sqrt{5}\tau^{-2} | k-4 | + (3-4\tau) | k-5 | \right\} C \end{cases}$$

para todo k = 1, . . ., 6. Entonces la función φ : $\mathbb{R}^3 \longrightarrow \mathbb{R}$ representada por

(1.2.2)
$$\varphi(\mathbf{X}) = \max_{1 \le k \le 6} |\Lambda_k \cdot \mathbf{X}|$$

para todo $X \in \mathbb{R}^3$, es una norma sobre \mathbb{R}^3 .

Demostración. Según (1.2.2), la afirmación $\varphi(X) = 0$ implica

$$|\Lambda_{\mathbf{k}} \cdot \mathbf{X}| \le \varphi(\mathbf{X}) = 0$$
 $\mathbf{k} = 1, \dots, 6$

expresiones equivalentes al sistema de ecuaciones

$$\Lambda_k \cdot \mathbf{X} = \mathbf{0} \qquad \qquad \mathbf{k} = 1, \dots, \mathbf{6}$$

por ser

$$det(\Lambda_{1,} \Lambda_{2,} \Lambda_{3})$$

= det $(\tau^{-1}A + \tau^{-1}B - C, 2A - \tau^{-1}B - \tau C, \sqrt{5}A - B - C)$
= - det (A, B, C) $\neq 0$

el rango de la matriz de los coeficientes es tres, y el sistema tiene como solución única X=0. La misma representación de ϕ nos aporta

$$\varphi(\lambda X) = |\lambda| \varphi(X), \qquad \lambda \in \mathbb{R}$$

У

$$\begin{split} & \Lambda_{k} \cdot (X+Y) \mid = \mid \Lambda_{k} \cdot X + \Lambda_{k} \cdot Y \mid \qquad k = 1, \dots, 6 \\ & \leq \mid \Lambda_{k} \cdot X \mid + \mid \Lambda_{k} \cdot Y \mid \leq \varphi (X) + \varphi (Y) \end{split}$$

lo que implica

$$\varphi$$
 (X+Y) $\leq \varphi$ (X) + φ (Y)

1.3. Teorema. Bajo todas las hipótesis del Lema 1.2, consideremos la norma φ sobre \mathbb{R}^3 representada en (1.2.1) y (1.2.2). Si r > 0, $G \in \mathbb{R}^3$ y

$$(1.3.1) \qquad \Delta = \det (A, B, C)$$

hagamos

(1.3.2)

$$\begin{cases}
V_{1} = G + \frac{r}{\Delta} (\tau^{-3}A \times B + B \times C + C \times A) \\
V_{2} = G + \frac{r}{\Delta} (A \times B + B \times C + \tau^{-3} C \times A) \\
V_{3} = G + \frac{r}{\Delta} (A \times B + \tau^{-3} B \times C - \tau^{-3} C \times A) \\
V_{4} = G + \frac{r}{\Delta} (\tau^{-3} A \times B - \tau^{-3} B \times C + \tau^{-3} C \times A) \\
V_{5} = G + \frac{r}{\Delta} (-\tau^{-3} A \times B + \tau^{-3} B \times C + C \times A) \\
V_{i+5} = 2G - V_{i}, V_{i} \qquad i = 1,...,5
\end{cases}$$

Entonces, $S_r[G]$ la esfera cerrada de centro G y radio r, respecto a la norma φ , es un prismatoide pentagonal afín, macizo y cerrado, centralmente simétrico en G, de vértices $V_1, \ldots V_{10}$ dados en (1.3.2) y dispuestos como se muestra en la Figura 3.

Figura 3. El prismatoide pentagonal afín conv $\{V_1,...,V_{10}\}$ es la esfera cerrada de centro $G = \frac{1}{2}(V_i + V_{i+5})$, i= 1,...,5, y radio r, respecto a la norma φ sobre \mathbb{R}^3 .

Además, los planos faciales del poliedro tienen las siguientes representaciones. Las caras (triángulos y pentágonos regulares afines)

(1.3.3)
$$\begin{array}{cccc} V_1 V_5 V_8, & V_1 V_9 V_8, & V_1 V_2 V_9, \\ V_2 V_{10} V_9, & V_2 V_3 V_{10}, & V_6 \dots V_{10} \end{array}$$

están en los planos

(1.3.4)
$$\Lambda_k \cdot (X - G) = r$$
 $k = 1, ..., 6$

respectivamente, donde Λ_k está definido en (1.2.1).

Los planos faciales de sus correspondientes caras opuestas (y paralelas) respecto a G, tienen representaciones de la misma forma anterior, cambiando r por –r.

Demostración. Aplicando propiedades de los determinantes y la relación (A x B) x (C x D) = (A x B \cdot D) C - (A x B \cdot C) D, hallamos que

det
$$(V_1 - G, V_2 - G, V_3 - G) = \frac{r^3}{\Delta} (35 - 22\tau) \neq 0$$

teniendo presente (1.3.1) y (1.3.2); es decir, G, V₁, V₂, V₃ son afinmente independientes en \mathbb{R}^3 , lo mismo que G', V₁', V₂', V₃' en el prismatoide pentagonal de la Figura 1 (de hecho no degenerado).

Por tanto existe un único automorfismo afín $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

(1.3.5) $f(G') = G, \qquad f(V'_k) = V_k, \qquad k = 1, 2,$

(Birkhoff y MacLane, 1970, p. 429; Rockafellar, 1972, p. 8).

Puede verificarse que los puntos V_4 , V_5 en (1.3.2) son combinaciones lineales promedio de G, V_1 , V_2 , V_3 como las indicadas en (1.1.3). Análogas combinaciones lineales ocurren para V'_4 y V'_5 por ser V'_1 V'_5 un pentágono regular, además de acuerdo al texto de la Figura 1,

$$V'_{i+5} = 2G' - V'_i$$
 $i = 1, ..., 5$

por lo cual, a la luz de (1.3.5) y de la última ecuación en (1.3.2)

$$f(V_i) = V_i$$
 $i = 1, ..., 10$

dado que f preserva tales combinaciones. Se sigue, según la Definición 1.1, que $V_1 \dots V_{10}$ es un prismatoide pentagonal afín de centro G y vértices dispuestos como se muestra en la Figura 3.

A continuación trataremos con los planos faciales de $V_1 \dots V_{10}$:

$$\Lambda_1 \cdot (V_1 - G) = \frac{r}{\Delta} \left(\tau^{-1} A + \tau^{-1} B - C \right) \cdot \left(\tau^{-3} A x B + B x C + C x A \right) \qquad \text{por (1.2.1) y (1.3.2)}$$

= r
$$\text{por (1.1.2) y (1.3.1)}$$

Análogamente se prueba que los vértices V_5 y V_8 satisfacen (1.3.4) para k = 1. Procediendo de este modo y según (1.3.2), se demuestra que las caras (1.3.3) del prismatoide están, respectivamente, en los planos dados en (1.3.4). Similarmente para los planos faciales de sus caras opuestas.

Consideremos ahora el dodecaedro $V_1 \dots V_{10}$ como un sólido macizo cerrado \mathcal{G} , esto es,

$$\mathcal{P} = \operatorname{conv} \{ V_1, \ldots, V_{10} \}$$

la envolvente convexa de sus vértices (Rockafellar, 1972, p. 158 Teorema 17.2; p.12 Corolario 2.3.1). Siendo cada X en \mathcal{P} una combinación convexa de la forma

$$\begin{split} \mathbf{X} &= \sum_{j=1}^{10} \,\lambda_{j} \, \mathbf{V}_{j} = \sum_{j=1}^{5} \,\lambda_{j} \, \mathbf{V}_{j} + \sum_{j=1}^{5} \,\lambda_{j+5} \, \mathbf{V}_{j+5} \\ &= \sum_{j=1}^{5} \,\lambda_{j} \, \mathbf{V}_{j} + \sum_{j=1}^{5} \,\lambda_{j+5} \, \left(2\mathbf{G} - \mathbf{V}_{j} \right) \\ &= \sum_{j=1}^{5} \,\lambda_{j} \, \left\{ \, \left(\mathbf{V}_{j} - \mathbf{G} \right) + \mathbf{G} \right\} - \sum_{j=1}^{5} \,\lambda_{j+5} \, \left\{ \, \left(\mathbf{V}_{j} - \mathbf{G} \right) - \mathbf{G} \right\} \end{split}$$
Por (1.3.2),
$$&= \mathbf{G} + \,\sum_{j=1}^{5} \, \left(\lambda_{j} - \lambda_{j+5} \right) \left(\mathbf{V}_{j} - \mathbf{G} \right) \end{split}$$

donde

$$\lambda_1 + \ldots + \lambda_{10} = 1 \qquad \qquad \text{y cada } \lambda_j \geq 0$$

Se desprende

$$(1.3.6) \begin{cases} \left(X-G \right) \cdot A_{k} = r \left\{ \left(-\tau^{-2}k + 6\tau^{-2} - \tau^{-2} \mid k-3 \mid +\tau^{-4} \mid k-4 \mid -\tau^{-4} \mid k-4 \mid -\tau^{-4} \mid k-5 \mid \right) \left(\lambda_{1} - \lambda_{6} \right) + \left(-2\tau^{-2}k - 3\tau + 10 + \tau^{-4} \mid k-2 \mid -\tau^{-2} \mid k-3 \mid - \mid k-5 \mid \right) \left(\lambda_{2} - \lambda_{7} \right) + \left(-k + 5 + \tau^{-2} \mid k-2 \mid -\tau^{-4} \mid k-3 \mid +\tau^{-4} \mid k-4 \mid -\sqrt{5}\tau^{-1} \mid k-5 \mid \right) \left(\lambda_{3} - \lambda_{8} \right) \\ + \left(-2\tau^{-2}k + 15 - 8\tau + \tau^{-2} \mid k-2 \mid +\tau^{-2} \mid k-4 \mid -2\tau^{-2}k + \tau^{-2} + \tau^{-4} \mid k-2 \mid -2\tau^{-2} \mid k-5 \mid \right) \left(\lambda_{4} - \lambda_{9} \right) + \left(-\tau^{-2}k + \tau^{-2} + \tau^{-4} \mid k-2 \mid \tau^{-4} \mid k-3 \mid +\tau^{-2} \mid k-4 \mid \right) \left(\lambda_{5} - \lambda_{10} \right) \right\} \\ \text{para todo } k = 1, \dots, 6, \end{cases}$$

relaciones en las cuales

$$\begin{aligned} \left| -\tau^{-2}\mathbf{k} + 6\tau^{-2} - \tau^{-2} \mid \mathbf{k} - 3 \mid + \tau^{-4} \mid \mathbf{k} - 4 \mid -\tau^{-4} \mid \mathbf{k} - 5 \mid \right| &\leq 1, \\ \left| -2\tau^{-2}\mathbf{k} - 3\tau + 10 + \tau^{-4} \mid \mathbf{k} - 2 \mid -\tau^{-2} \mid \mathbf{k} - 3 \mid - \mid \mathbf{k} - 5 \mid \right| &\leq 1, \\ \left| -\mathbf{k} + 5 + \tau^{-2} \mid \mathbf{k} - 2 \mid -\tau^{-4} \mid \mathbf{k} - 3 \mid + \tau^{-4} \mid \mathbf{k} - 4 \mid -\sqrt{5}\tau^{-1} \mid \mathbf{k} - 5 \mid \right| &\leq 1, \\ \left| -2\tau^{-2}\mathbf{k} + 15 - 8\tau + \tau^{-2} \mid \mathbf{k} - 2 \mid + \tau^{-2} \mid \mathbf{k} - 4 \mid - 2\tau^{-2} \mid \mathbf{k} - 5 \mid \right| &\leq 1, \\ \left| -\tau^{-2}\mathbf{k} + \tau^{-2} + \tau^{-4} \mid \mathbf{k} - 2 \mid -\tau^{-4} \mid \mathbf{k} - 3 \mid + \tau^{-2} \mid \mathbf{k} - 4 \mid - 2\tau^{-2} \mid \mathbf{k} - 5 \mid \right| &\leq 1, \end{aligned}$$

para todo k = 1, ..., 6, y por ende, de acuerdo a la desigualdad triangular,

para todo k = 1, ..., 6, y por esto según (1.2.2), $\varphi(X - G) \leq r$, es decir $\mathscr{P} \subseteq S_r[G]$ la esfera cerrada de centro G y radio r respecto a la norma φ .

Por ser ϕ (X - G) una función real convexa, propia y cerrada, para todo $X {\in } {\rm I\!R}^3,$ entonces

$$F_{r}(S_{r}[G]) = \left\{ X \in \mathbb{R}^{3} \mid \varphi(X - G) = r \right\}$$

(Rockafellar, 1972, p. 59; Corolario 7.6.1)

Si $X \in \text{conv} \{V_1, V_5, V_8\} \subseteq \mathcal{P}$ existen λ_1 , λ_5 , λ_8 no negativos, $\lambda_1 + \lambda_5 + \lambda_8 = 1$, tales que

$$\mathbf{X} = \lambda_1 \mathbf{V}_1 + \lambda_5 \mathbf{V}_5 + \lambda_8 \mathbf{V}_8 + \sum_{j \in \{1,...,10\} \sim \{1,5,8\}} \mathbf{V}_j$$

reduciéndose las expresiones en (1.3.6) a

$$\begin{aligned} & (X-G) \cdot \Lambda_{k} = r \left\{ \left(-\tau^{-2}k + 6\tau^{-2} - \tau^{-2} | k-3 | + \tau^{-4} | k-4 | - \tau^{-4} | k-5 | \right) \lambda_{1} \\ & - \left(-k + 5 + \tau^{-2} | k-2 | - \tau^{-4} | k-3 | + \tau^{-4} | k-4 | - \sqrt{5} \tau^{-1} | k-5 | \right) \lambda_{8} \\ & + \left(-\tau^{-2}k + \tau^{-2} + \tau^{-4} | k-2 | - \tau^{-4} | k-3 | + \tau^{-2} | k-4 | \right) \lambda_{5} \right\} \end{aligned}$$

k = 1,...,6, y en particular (X-G) $\cdot \Lambda_1 = r$, por lo cual según (1.2.2),

$$\varphi(\mathbf{X} - \mathbf{G}) = \mathbf{r}$$

У

$$\operatorname{conv}\left\{V_{1}, V_{5}, V_{8}\right\} \subseteq F_{r}\left(S_{r}\left[G\right]\right)$$

Así, utilizando (1.3.6) en general se prueba que todas las caras de \mathcal{P} están contenidas en la frontera de S_r [G]. Por tanto

(1.3.7)
$$\mathscr{P} \subseteq S_{r}[G] \quad y \quad F_{r}(\mathscr{P}) \subseteq F_{r}(S_{r}[G])$$

Si $X \in S_r[G] \sim \mathcal{P}$ entonces X es un punto interior de $\mathbb{R}^3 - \mathcal{P}$ por ser \mathcal{P} cerrado, y el segmento $GX \subseteq S_r[G]$ interseca a $F_r(\mathcal{P})$ en un punto P entre G y X (por ser \mathcal{P} un poliedro convexo), esto es, $P \in int(S_r[G])$ (Rockafe-

llar, 1972, p. 45 Teorema 6.1) y además por (1.3.7) $P \in F_r(S_r[G])$ lo cual es imposible. Así que $S_r[G] \subseteq \mathcal{P}$.

2. REPRESENTACIÓN DE UN PRISMATOIDE PENTAGONAL AFÍN DADO

2.1. Teorema. Sea dado un prismatoide pentagonal afín \mathcal{P} , macizo y cerrado, de vértices V₁,..., V₁₀ dispuestos como en la Figura 3 y centro

$$G = \frac{1}{2} (V_i + V_{i+5})$$
 $i = 1, ..., 5$

Si

(2.1.1)
$$\nabla = \det (V_1 - G, V_2 - G, V_3 - G)$$

hagamos

(2.1.2)
$$\begin{cases} A = \nabla^{-1} \left\{ \tau^{-3} (V_1 - G) \times (V_2 - G) + (V_2 - G) \times (V_3 - G) - (V_1 - G) \times (V_3 - G) \right\} \\ B = \nabla^{-1} \left\{ -\tau^{-3} (V_1 - G) \times (V_2 - G) + (V_2 - G) \times (V_3 - G) - \tau^{-3} (V_1 - G) \times (V_3 - G) \right\} \\ C = \nabla^{-1} \left\{ (V_1 - G) \times (V_2 - G) + \tau^{-3} (V_2 - G) \times (V_3 - G) - (V_1 - G) \times (V_3 - G) \right\} \end{cases}$$

Entonces, para dichos vectores, \mathscr{P} es la esfera cerrada unitaria de centro G respecto a la norma φ sobre \mathbb{R}^3 representada en (1.2.1) y (1.2.2).

Demostración. De acuerdo a la Definición 1.1, \mathcal{P} es un poliedro no degenerado y por tanto el determinante ∇ en (2.1.1) es no nulo. Además, teniendo en mente (2.1.2) hallamos

$$\Delta = \det(\mathbf{A}, \mathbf{B}, \mathbf{C}) = -4\tau^{-5}\nabla^{-1} \neq 0$$

En otras palabras, los vectores A, B, C definidos en (2.1.2) satisfacen las hipótesis del Teorema 1.3 bajo los cuales consideramos la norma φ sobre \mathbb{R}^3 introducida en (1.2.1) y (1.2.2). Por tanto, su esfera cerrada unitaria S₁ [G] es un prismatoide pentagonal afín de centro G, de tal manera que remitiéndonos a las expresiones en (1.3.2) (después de cuidadosos cálculos vectoriales) se demuestra que V₁, V₂ y V₃ son también vértices de S₁ [G].

Ahora bien, dado que \mathscr{P} es la imagen automorfa afín de un prismatoide pentagonal, entonces sus vértices (y los de S₁[G], según se estableció en la demostración del Teorema 1.3) son combinaciones lineales promedio de G, V₁, V₂ y V₃ como las indicadas en (1.1.3). Se dimana que los vértices de S₁[G] son, justamente, V₁, ..., V₁₀, es decir, S₁[G] = \mathscr{P} .

2.2. Ilustración. Consideremos el prismatoide pentagonal de centro el origen 0 y arista 2, de vértices

$$V'_{1} = (0, \tau, 1) V'_{2} = (0, \tau, -1) V'_{3} = (1, 0, -\tau)$$
$$V'_{4} = (\tau, -1, 0) V'_{5} = (1, 0, \tau,) V'_{i+5} = -V'_{i}$$

i = 1, ..., 5, dispuestos como en la Figura 1, obtenido del icosaedro regular de Edmund Hess (1.843-1.903) al suprimir dos pirámides pentagonales opuestas de ápices $\pm (\tau, 1, 0)$ (Coxeter, 1973, p. 52). Entonces, aludiendo al Teorema 2.1 hallamos

$$\nabla = -2\tau, \qquad V'_{1} X V'_{2} = (-2\tau, 0, 0),$$
$$V'_{2} X V'_{3} = (-\tau^{2}, -1, -\tau), \qquad V'_{1} X V'_{3} = (-\tau^{2}, 1, -\tau)$$

y las expresiones en (2.1.2) se reducen a

A =
$$\tau^{-3}(1, \tau^2, 0)$$
, B = $\tau^{-2}(1, 1, 1)$, C = $\tau^{-2}(1, 1, -1)$

Por tanto, y de acuerdo a la norma φ en (1.2.1) y (1.2.2) el prismatoide pentagonal como sólido cerrado, tiene la siguiente representación cartesiana,

$$m \acute{a} x \left\{ \left| x_{2} \pm \tau^{2} x_{3} \right|, \tau \left| x_{1} - x_{2} \pm x_{3} \right|, \left| x_{1} - \tau^{2} x_{2} \right|, \tau^{2} \left| \tau x_{1} + x_{2} \right| \right\} \le \tau^{3}$$

condición necesaria y suficiente para que un punto (x_1, x_2, x_3) en \mathbb{R}^3 esté en el sólido. La igualdad sólo ocurre en la frontera del poliedro.

3. Representación del prismatoide pentagonal

Dado que el prismatoide pentagonal se obtiene del icosaedro regular (ver ilustración 2.2), y observando así que los diez centroides de las caras triangulares del prismatoide forman parte de los veinte vértices de un dodecaedro regular (inscrito en dicho icosaedro), caracterizamos a continuación los puntos del sólido.

3.1 Corolario. Sea \mathcal{P} un prismatoide pentagonal dado, macizo y cerrado de centro G y arista a. Si C₁,...,C₅ son los centros de cinco caras triangulares no opuestas de \mathcal{P} , y C₆ el centro de una cara pentagonal, entonces

(i) La inecuación de \mathcal{P} es

(3.1.1)
$$\min\left\{ \left| (C_1 - G) \cdot (X - G) \right|, \dots, \left| (C_5 - G) \cdot (X - G) \right| \frac{\sqrt{5}\tau^3}{3} \left| (C_6 - G) \cdot (X - G) \right| \right\} \le \frac{a^2 \tau^4}{12} \right\}$$

donde la igualdad sólo ocurre en la frontera del poliedro

(ii) Sea S el conjunto de los veinte vértices del dodecaedro regular de centro G, diez de los cuales son los puntos C_k , $2G-C_k$, k = 1, ..., 5. Si \mathcal{K}_6 es el eje de simetría del dodecaedro a través de los centros de las caras pentagonales de vértices los puntos del conjunto S ~ {C₁, ..., C₅, 2G - C₁, ..., 2G - C₅} (esto es, \mathcal{K}_6 es la recta que pasa por G y C₆), y \mathcal{K}_k es la recta que contiene la diagonal del dodecaedro que une a C_k y 2G-C_k, k = 1, ..., 5, entonces

$$\mathscr{P} = \left\{ \begin{array}{l} X \in \mathbb{R}^{3} \mid \max \quad \left\{ \frac{5^{\frac{1}{4}}}{3^{\frac{1}{2}}} \tau^{\frac{3}{2}} \right. (\text{Proyección de } \overline{\text{XG}} \text{ sobre } \mathscr{K}_{6}), \\ \left. \left(3.1.2 \right) \right. \\ \left. \begin{array}{l} \max_{1 \le k \le 5} \\ 1 \le k \le 5 \end{array} \right. \text{Proyección de } \overline{\text{XG}} \text{ sobre } \mathscr{K}_{k} \end{array} \right\} \le \left. \frac{\sqrt{3}}{6} \right. a \tau^{2} \right\} \right\}$$

(ver Figura 4)

Demostración. De acuerdo al Teorema 2.1, \mathscr{P} es la esfera cerrada unitaria de centro G respecto a la norma φ sobre \mathbb{R}^3 representada en (1.2.1) y (1.2.2), bajo las condiciones en (2.1.2), donde V₁, ..., V₁₀ son los vértices de \mathscr{P} dispuestos como en la Figura 3.

Si C₁,..., C₆ son los centros de las caras de \mathcal{P} listadas en (1.3.3), respectivamente, y dado que \mathcal{P} se obtiene de un icosaedro regular \mathcal{P}_0 (Ver ilustración 2.2), entonces C₁ - G, ..., C₆ - G son vectores normales a estas caras, respectivamente (la insfera del icosaedro regular es tangente a cada cara (en este caso a las diez caras triangulares del prismatoide) en su centro).

Figura 4. Si \mathscr{P} es un prismatoide pentagonal, macizo y cerrado de arista a, vértices V₁... V₁₀ y centro $G = \frac{1}{2} (V_i + V_{i+5})$, i=1,...,5, entonces $\mathscr{P} = \begin{cases} X \in \mathbb{R}^3 \mid \text{máx} \quad \begin{cases} \frac{5^{1/4}}{3^{1/2}} & \tau^{\frac{3}{2}} \end{cases}$ (Proyección de \overline{XG} sobre \mathscr{K}_6), máx Proyección de \overline{XG} sobre $\mathscr{K}_k \quad \end{cases} \leq \frac{\sqrt{3}}{6} a \tau^2 \end{cases}$, dende C — C com los contros de cinco correctricorgulares no equestes y percelelos y C ...

donde $C_1, ..., C_5$ son los centros de cinco cara triangulares no opuestas y paralelas, y C_6 el centro de una cara pentagonal

De acuerdo a la última parte del Teorema 1.3 y a las relaciones en (1.3.4) con r = 1, existen escalares t_k tales que

(3.1.3)
$$\Lambda_{k} = t_{k} (C_{k} - G) \quad y \quad (-1)^{i_{k}} t_{k} (C_{k} - G) \cdot (V_{j_{k}} - G) = 1$$

k = 1, ..., 6, donde

$$i_1 = i_3 = j_3 = 2$$
, $i_2 = i_4 = i_5 = i_6 = j_1 = 1$, $j_2 = 3$,
 $j_4 = 4$ $j_5 = j_6 = 5$

teniendo en mente que $V_{i+5} = 2G - V_i$, i = 1, ..., 5, como se consigna en (1.3.2). De este modo,

(3.1.4) Instadio de $\mathcal{P}_0 =$ La distancia de G a los planos de las caras triangulares de \mathcal{P}_0

$$= \|C_{K} - G\| = \frac{3^{-1/2}}{2}a\tau^{2}$$

У

(3.1.5) Circunradio de
$$\mathcal{P}_0 = \| \mathbf{V}_k - \mathbf{G} \| = \frac{5^{\frac{1}{4}}}{2} a \tau^{\frac{1}{2}}$$

para todo k = 1, . . ., 5 (Coxeter, 1973, pp. 292 - 293, Tabla I), por lo cual

$$\frac{3^{-\frac{1}{2}}}{2}a\tau^{2} = \frac{\left| A_{k} \cdot (V_{j_{k}} - G) \right|}{\| A_{k} \|}$$

$$= \frac{\left| (-1)^{i_{k}} t_{k} (C_{k} - G) \cdot (V_{j_{k}} - G) \right|}{\| (-1)^{i_{k}} t_{k} (C_{k} - G) \|}$$
Por (3.1.3)
$$= \frac{1}{|t_{k}| \| C_{k} - G \|} = \frac{2\sqrt{3}}{a\tau^{2} | t_{k} |}$$

y por ende

$$|t_k| = \frac{12}{a^2 \tau^4}$$
 $k = 1, \dots, 5$

Además, teniendo presente que el circunradio del pentágono regular $V_1 \dots V_5$ (de lado a) es

(3.1.6)
$$\| V_k - C_6 \| = 5^{-\frac{1}{4}} a \tau^{\frac{1}{2}} \qquad k = 1, ..., 5$$

entonces

La distancia de G al plano de una cara pentagonal de $\mathcal{P} = \|C_6 - G\|$ $= \frac{\left| A_6 \cdot \left(V_{j_6} - G \right) \right|}{\| A_6 \|} = \frac{\left| (-1)^{i_6} t_6 (C_6 - G) \cdot \left(V_{j_6} - G \right) \right|}{\| (-1)^{i_6} t_6 (C_6 - G) \|}$ Por (3.1.3) $= \frac{1}{|t_6| \|C_6 - G\|}$ o bien, de acuerdo al Teorema de Pitágoras (V_k C₆ G es un triángulo rectángulo, recto en C₆, para todo k = 1, ..., 5),

$$\frac{1}{|t_6|} = \|C_6 - G\|^2 = \|V_k - G\|^2 - \|V_k - C_6\|^2$$

= $\frac{a^2 \sqrt{5} \tau}{20}$ Por (3.1.5) y (3.1.6)

y por tanto

(3.1.7)
$$|t_6| = \frac{4\sqrt{5}}{a^2 \tau}$$
 y $||C_6 - G|| = \frac{a}{2} 5^{-\frac{1}{4}} \tau^{\frac{1}{2}}$

reduciéndose $\phi(X - G) \leq 1$ a la expresión (3.1.1), o bien,

(3.1.8)
$$\begin{aligned} & \max \left\{ \| \mathbf{X} - \mathbf{G} \| \| \mathbf{C}_{1} - \mathbf{G} \| |\cos \theta_{1}|, \cdots, \\ & \| \mathbf{X} - \mathbf{G} \| \| \mathbf{C}_{5} - \mathbf{G} \| |\cos \theta_{5}| \\ & \frac{\sqrt{5}\tau^{3}}{3} \| \mathbf{X} - \mathbf{G} \| \| \mathbf{C}_{6} - \mathbf{G} \| |\cos \theta_{6}| \right\} \leq \frac{\mathbf{a}^{2}\tau^{4}}{12} \end{aligned}$$

donde θ_k es el ángulo entre los vectores X - G $\neq 0$ y C_k - G, k = 1, ..., 6. Ahora, teniendo presente (3.1.4) y (3.1.7), y percibiendo que

$$\begin{cases} |X - G|| & |\cos \theta_k| = \text{Proyección de } \overline{XG} \text{ sobre } \mathcal{K}_k, \\ \text{para todo } k = 1, \dots, 6. \end{cases}$$

Entonces la relación (3.1.8) es equivalente a la condición que define al poliedro \mathcal{P} en (3.1.2).

3.2. Corolario. Sea \mathcal{P} un prismatoide pentagonal, macizo y cerrado, de arista a y vértices $V_1, ..., V_{10}$ dispuestos como en la Figura 3, y centro

$$G = \frac{1}{2} (V_i + V_{i+5})$$
 $k = 1, ..., 5$

Hagamos

(3.2.1)
$$\begin{cases} A = b \left\{ \tau \left(V_{1} - G\right) + \left(V_{3} - G\right) \right\} \\ B = b \left\{ \tau^{2} \left(V_{1} - G\right) - \tau V_{2} + \tau V_{3} \right\} \\ C = b \left\{ \left(V_{1} - G\right) + \tau \left(V_{3} - G\right) \right\} \end{cases}$$

Entonces A, B, C son linealmente independientes en \mathbb{R}^3 , para los cuales obtenemos en (1.2.1)

$$\{3.2.2\}$$

$$\left\{ \begin{array}{l} \mathcal{A}_{1} = b \left\{ \tau \left(V_{1} - G \right) - \left(V_{2} - G \right) \right\} \\ \mathcal{A}_{2} = b \left\{ \left(V_{2} - G \right) - \tau \left(V_{3} - G \right) \right\} \\ \mathcal{A}_{3} = b \left\{ \tau \left(V_{2} - G \right) - \left(V_{3} - G \right) \right\} \\ \mathcal{A}_{4} = b \left\{ -\tau \left(V_{1} - G \right) + \tau^{2} \left(V_{2} - G \right) - \tau \left(V_{3} - G \right) \right\} \\ \mathcal{A}_{5} = b \left\{ -\left(V_{1} - G \right) + \tau \left(V_{2} - G \right) \right\} \\ \mathcal{A}_{6} = b \left\{ -\tau^{3} \left(V_{1} - G \right) + \tau^{2} \left(V_{2} - G \right) - \tau^{3} \left(V_{3} - G \right) \right\} \right\}$$

vectores que a su vez definen la norma φ sobre \mathbb{R}^3 en (1.2.2), respecto a la cual, \mathscr{P} es la esfera cerrada unitaria de centro G, donde $b = 4a^{-2} \tau^{-3}$.

Demostración. Si $V'_1 \dots V'_{10}$ es el prismatoide pentagonal de centro 0 de la ilustración 2.2, según se estableció en la demostración del Teorema 1.3, existe un automorfismo afín f de \mathbb{R}^3 tal que $f(V'_i) = V_i$ i = 1, ..., 10 y f (0) = G. En este caso $\theta_{ij} = \angle V_i G V_j$ implica $\theta_{ij} = \angle V'_i \mathbf{0} V'_j$, por lo cual cálculos directos (con los vértices V'_i) nos aportan que en general

$$\cos \theta_{12} = -\cos \theta_{13} = \cos \theta_{23} = -5^{-\frac{1}{4}} \tau^{\frac{1}{2}} \cos \theta = \frac{\sqrt{5}}{5}$$

donde θ es el ángulo entre los vectores $V_1' \times V_2' = y V_3'$, esto es, entre $(V_1 - G) \times (V_2 - G) + y V_3 - G$. Entonces

(3.2.3)

$$\nabla = \det (V_{1} - G, V_{2} - G, V_{3} - G)$$

$$= \left\{ (V_{1} - G) x (V_{2} - G) \right\} \cdot (V_{3} - G)$$

$$= \| (V_{1} - G) x (V_{2} - G) \| \| V_{3} - G \| \cos \theta$$

$$= R^{2} \sqrt{1 - \cos^{2} \theta_{12}} R \cos \theta \qquad \text{(Identidad de Lagrange)}$$

$$= -2 \cdot 5^{-\frac{3}{4}} R^{3} = -\frac{a^{3}}{4} \tau \qquad \text{por (3.1.5)}$$

donde R = $||V_k - G||$, k = 1, ..., 5, es el circuntadio de \mathcal{P} . Así, existen escalares s, t y u tales que

$$(V_1 - G) \times (V_2 - G) = s (V_1 - G) + t (V_2 - G) + u (V_3 - G)$$

Multiplicando interiormente ambos miembros de esta ecuación, sucesivamente por V_i - G, i = 1, 2, 3, obtenemos, respectivamente, las siguientes tres ecuaciones simultáneas

$$\begin{cases} 5s + \sqrt{5}t - \sqrt{5}u = 0\\ \sqrt{5}s + 5t + \sqrt{5}u = 0\\ \sqrt{5}s - \sqrt{5}t - 5u = \sqrt{5}a \end{cases}$$

resolviendo el sistema obtenemos

$$\mathbf{s} = -\mathbf{t} = \frac{\tau}{2}\mathbf{u} = -\frac{\mathbf{a}}{2}\tau^2$$

es decir,

$$(V_1 - G)x (V_2 - G) = \frac{a}{2}\tau \left\{ -\tau (V_1 - G) + \tau (V_2 - G) - 2 (V_3 - G) \right\}$$

Procediendo análogamente encontramos

$$(V_2 - G)x (V_3 - G) = \frac{a}{2}\tau \left\{ -2(V_1 - G) + \tau (V_2 - G) - \tau (V_3 - G) \right\}$$

У

$$(V_1 - G)x(V_3 - G) = \frac{a}{2}\tau \left\{ -\tau (V_1 - G) + 2(V_2 - G) - \tau (V_3 - G) \right\}$$

sustituyendo estos valores y vectores en (2.1.2) arribamos a (3.2.1), y por ende de acuerdo al Teorema 2.1, \mathcal{P} es la esfera cerrada unitaria de centro G respecto a la norma φ sobre \mathbb{R}^3 representada en (3.2.2) y (1.2.2).

4. ESTEREOMETRÍA DEL POLIEDRO AFÍN

4.1. Teorema. Sea \mathscr{P} un prismatoide pentagonal afín, de vértices V₁, ...,V₁₀ dispuestos como en la Figura 3 y centro

(4.1.1)
$$G = \frac{1}{2} (V_i + V_{i+5}) \qquad k = 1, \dots, 5$$

Hagamos

(4.1.2)

$$W_{1} = (V_{1} - G) \times (V_{2} - G)$$

$$W_{2} = -\tau (V_{1} - G) \times (V_{3} - G) + \tau (V_{2} - G) \times (V_{3} - G) ,$$

$$W_{3} = -\tau (V_{1} - G) \times (V_{2} - G) + (V_{1} - G) \times (V_{3} - G) + (V_{2} - G) \times (V_{3} - G)$$

y denotemos por \mathcal{K} a la matriz cuadrada no singular de orden tres cuya i-ésima columna es w_i^{T} . Entonces

(i) La ecuación del circunelipsoide de \mathcal{P} (el elipsoide donde está inscrito \mathcal{P}) es

(4.1.3)
$$(X - G) \mathscr{K} \mathscr{K}^{T} (X - G)^{T} = \sqrt{5}\tau \nabla^{2}$$

donde \mathscr{K}^{T} (y similares) es la transpuesta de \mathscr{K} y ∇ es el determinante (2.1.1).

(ii) Si f es el automorfismo afín de \mathbb{R}^3 representado por

(4.1.4)
$$f(X) = \nabla^{-1} (X - G) \mathscr{K} \qquad X \in \mathbb{R}^3$$

entonces f (\mathcal{P}) es ;justamente! el prismatoide pentagonal de vértices f (V_i) = V'_i , i = 1, ..., 10, de la ilustración 2.2.

(iii) El volumen de \mathscr{P} es $\frac{2}{3}\sqrt{5}\tau^2 |\nabla|$

En particular, si \mathscr{P} es un prismatoide pentagonal de arista a, entonces su volumen es $\frac{\sqrt{5}}{\sqrt{2}}a^3\tau^3$

Demostración. Dado que

det
$$\mathscr{K} = \det \mathscr{K}^{\mathrm{T}} = \det (\mathrm{W}_1, \mathrm{W}_2, \mathrm{W}_3) = -2\tau \nabla^2 \neq 0$$

entonces \mathcal{K} es no singular y $\mathcal{K}\mathcal{K}^{T}$ es una matriz simétrica positivamente definida, por lo cual (4.1.3) es, en efecto, la ecuación de un elipsoide de centro G (Strang, 1982, pp. 282 - 285).

Las expresiones

$$\begin{aligned} & (\mathbf{X} - \mathbf{G}) \ \mathcal{K} \ \mathcal{K}^{\mathrm{T}} \ (\mathbf{X} - \mathbf{G})^{\mathrm{T}} = \| (\mathbf{X} - \mathbf{G}) \ \mathcal{K} \|^{2} , \\ & (\mathbf{X} - \mathbf{G}) \ \mathcal{K} = \left(\ (\mathbf{X} - \mathbf{G}) \cdot \mathbf{W}_{1}, \ (\mathbf{X} - \mathbf{G}) \cdot \mathbf{W}_{2}, \ (\mathbf{X} - \mathbf{G}) \cdot \mathbf{W}_{3} \right) \end{aligned}$$

y las dadas en (4.1.2) pueden utilizarse para probar que los vértices V_1 , V_2 y V_3 satisfacen la ecuación (4.1.3). Para verificar que los otros vértices $V_4,...,V_{10}$ de \mathcal{P} también la satisfacen, nos remitimos a (1.1.3) y (4.1.1).

Procediendo así también se demuestra, teniendo presente (4.1.4), que $f(V_i) = V'_i$, i = 1,..., 10, los vértices del prismatoide pentagonal de la ilustración 2.2.

Ahora consideremos en la Figura 1 la pirámide de ápice G' y base el triángulo equilátero $V_1 V_2 V_9$ de centro C₃, según se acordó en la demostración del Corolario 3.1. Su volumen es, de acuerdo al prismatoide pentagonal de la ilustración 2.2, con G = 0,

$$\frac{1}{3} \quad \left(\text{área de } V_1' \quad V_2' \quad V_9' \right) \quad \cdot \parallel C_3 - G' \parallel$$

$$= \frac{\tau^2}{3} \quad \text{por (3.1.4) con } a = 2$$

Además el volumen de la pirámide de ápice G' = 0 y base el pentágono regular $V_6 \cdots V_{10}$ de centro C_6 , según se convino en la demostración del Corolario 3.1, es de acuerdo a la ilustración 2.2.

$$\frac{1}{3} \cdot \left(\text{área de } V_6^{'} \dots V_{10}^{'} \right) \cdot \left\| C_6 - G^{'} \right\|$$
$$= \frac{\sqrt{5}}{3} \tau^2$$
 por (3.1.7) con a = 2

Por esto el volumen del prismatoide pentagonal $V_{1}^{'}$... $V_{10}^{'}$ es

$$10 \cdot \frac{\tau^2}{3} + 2 \cdot \frac{\sqrt{5}}{3} \tau^2 = \frac{2}{3} \left(5 + \sqrt{5} \right) \tau^2$$

y por ende

$$\frac{2}{3} \left(5 + \sqrt{5} \right) \tau^2 = \mathbf{v} |\det \left(\nabla^{-1} \mathcal{K} \right)| = 2 \mathbf{v} \tau |\nabla|^{-1}$$

donde v es el volumen de \mathscr{P} (Birkhoff y MacLane, 1965, p. 243; Corolario). En particular $a^{:(\mathcal{P})} \propto un$ prismatoide pentagonal de arista a, entonces, según (3.2.3), $\nabla = -\frac{a^3}{4}\tau$.

REFERENCIAS

- Birkhoff, G. y MacLane, S. (1965). *A brief survey of modern algebra*. (Segunda edición.) New York, USA: The Macmillan Company.
- Birkhoff, G. y MacLane, S. (1970). *Algebra*. (Cuarta reimpresión.) Londres, Gran Bretaña: The Macmillan Company.
- Coxeter, H.S.M. (1973). *Regular polytopes*. (Tercera edición.) New York, USA: Dover Publications.
- Coxeter, H.S.M. (1989). Introduction to geometry. (Segunda edición.) New York, USA: John Wiley & Sons, Inc.
- Fuentes, A. (1991). Desarrollo en fracción continua simple infinita de las potencias enteras del número de oro. *Educación Matemática*, *3*(1), 19-38.
- Rockafellar, R.T. (1972). Convex analysis. New Jersey, USA: Princeton University Press.
- Strang, G. (1982). *Álgebra lineal y sus aplicaciones*. Bogotá, Colombia: Fondo Educativo Interamericano S.A.