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Abstract 

Thermodynamic processes are often presented in so called P-V diagrams and 
the processes are often isobaric, isochoric, isothermal, and adiabatic. The 
purpose of the qualitative research reported here was to explore students’ 
reasoning and interpretation of P-V diagrams that were presented by the help 
of GeoGebra. The research group had 15 students and the control group had 
12 students. The control group were not given any dynamical explanation of 
the PV diagrams but were taught with static images in the same text book as 
the research group. The thermodynamics in Physics 1 at the Swedish 
gymnasium level is normally done within 2 weeks.  We allocated 3 weeks and 
10 hours for the thermodynamics to be taught and then gave all 27 students a 
short test. At the end of the Physics 1 course, we also gave a test with two 
questions from the thermodynamics. It seems that the students who were given 
the opportunity to dynamically change the content of the PV diagram benefit 
more from the teaching compared to the control group. 

Keywords: Graphical Information, PV Graphics.
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Resumen 

Los procesos termodinámicos suelen presentarse en los denominados 

diagramas P-V y los procesos suelen ser isobáricos, isocóricos, isotérmicos y 

adiabáticos. El objetivo de la investigación cualitativa de la que aquí se 

informa era explorar el razonamiento y la interpretación de los alumnos de los 

diagramas P-V que se presentaban con la ayuda de GeoGebra. El grupo de 

investigación estaba formado por 15 estudiantes y el grupo de control por 12 

estudiantes. Al grupo de control no se le dio ninguna explicación dinámica de 

los diagramas P-V, sino que se les enseñó con imágenes estáticas en el mismo 

libro de texto que al grupo de investigación. La termodinámica en Física 1 en 

el nivel de gimnasia sueco se hace normalmente en 2 semanas.  Dedicamos 3 

semanas y 10 horas a la enseñanza de la termodinámica y, a continuación, 

sometimos a los 27 estudiantes a un breve examen. Al final del curso de Física 

1, también hicimos un examen con dos preguntas de termodinámica. Parece 

que los estudiantes que tuvieron la oportunidad de cambiar dinámicamente el 

contenido del diagrama FV se beneficiaron más de la enseñanza en 

comparación con el grupo de control. 

Palabras clave: Información Gráfica, Gráficos PV. 
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graph is a powerful tool to interpret data and represent the 

relationships between variables in various disciplines such as social 

sciences (psychology, economics, and sociology) and natural 

sciences (physics, biology, and chemistry). Therefore, the ability to 

use a graph is an important goal in physics education. 

    Mathematical representations such as diagrams, histograms, functions, 

graphs, tables, and symbols facilitate understanding and communication of 

abstract mathematical concepts or other situations described in mathematical 

terms (Elby, 2000; Leinhardt, Zaslavsky, & Stein, 1990). Nevertheless, 

today's humans face a world shaped by increasingly complex, dynamic and 

powerful information systems through various media. Being able to interpret, 

understand and work with graphical representations involves mathematical 

processes the student needs to appreciate, comprehend and be able to address 

when facing interpretation challenges (Friel, Curcio & Bright, 2001). 

    For mathematics education in an elementary, middle, lower secondary and 

upper secondary perspective, teachers use different representations in order to 

make it possible for students to understand more and more complex 

mathematical objects and concepts gradually. Geometrical constructions, 

graphs of functions and various diagrams of different kinds are used to 

introduce new concepts and study relations, dependency, and change 

(Trigueros & Martínez-Planell, 2010). Mathematical representations, 

structures and constructions are also used in different scientific branches, such 

as biology, chemistry, physics, or social science. It is of major importance that 

students learn how to interpret graphical representations in a scientific and 

successful way. 

    Understanding a graphical representation of a situation requires different 

concepts be incorporated in the specific representation. The critical problem 

of transition between and within representations has been addressed in several 

studies (Breidenbach, Hawks, Nichols & Dubinsky, 1992; Janvier, 1987; 

Sfard, 1992). They claim that bridging the gap between algebraic and graphic 

representations depends highly on how students encapsulated relevant 

concepts involved in the representation. 

    Since PV diagrams are not common in newspapers or in everyday 

discussions, PV graphs are difficult for students to relate to anything in their 

daily life. Heat, volume, internal energy, entropy, pressure, and temperature 

change in thermodynamics. We can visualise these changes better by making 

A 
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a graphical representation which shows the relationship between these 

changes and the thermodynamic stages of a process. These graphical 

representations are known as PV graphs (pressure-volume diagrams). See 

Figure 1. The constructions in GeoGebra were given in Swedish to the 

students. I have translated them into English. 

    A valuable characteristic of PV diagrams and models of thermodynamic 

processes is their symmetry. One example of this symmetry is an isobaric 

process (constant pressure) with a volume expansion from state 1 to state 2. 

You see this in Figure 1. 

    When it comes to drawing basic PV graphs, the y-axis represents the 

pressure, and the x-axis represents the volume. Increasing pressure values 

follow a down-to-up direction, and increasing volume values follow from left 

to right. An arrow indicates the direction of the processes. The left-to-right 

direction is positive, while the right-to-left is negative. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A PV graph of the work in a gas where the area is p1 = p ·ΔV (the blue 

region in Figure 1). 

 

    Since we have Work (by the gas) defined as W = p ·ΔV, when calculating 

the work of the gas (as pressure per change in volume) in PV diagrams, we 

can calculate this as the area below the curve. In an isobaric process, the work 

equals the pressure multiplied by the volume change. If we do not have a graph 

or if we do not have the formula for a function, we can use the formula instead 

(see Figure 2). 
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The Problem 
 

Let us assume that we have an isotherm process with a gas with an amount of 

5 moles that expands under constant temperature at 400 K from 3 litres under 

6 atm to 9 litres under 2 atm. What work is done by the gas?  

    If we have a reversible and isothermal process, we use the formula P·ΔV 

for irreversible expansion at constant pressure. The derivation for the 

reversible process formula is from the integral:  

 

(1)    ∫ 𝑃 𝑑𝑉
𝑉2

𝑉1
  

 

but if pressure is not constant and we are using the ideal gas law, we use the 

formula:  

 

(2)    PV = n·R·T  

 

and we substitute P=( nRT)/V so that: 

 

(3)     ∫
𝑛𝑅𝑇

𝑉
 𝑑𝑉

𝑉2

𝑉1
.   

 

Since n, R, and T are constants, we write the integral as:  

 

(4)    𝑛𝑅𝑇 ∫
1

𝑉
 𝑑𝑉

𝑉2

𝑉1
.  

 

We now evaluate the integral. Since the ∫
1

𝑉
 𝑑𝑉 = ln 𝑉, we get that work by 

the gas can be written as  

 

(5)    W = nRT·ln 
𝑉2

𝑉1
 or W = nRT· ln 

𝑉𝑓𝑖𝑛𝑎𝑙

𝑉𝑠𝑡𝑎𝑟𝑡
 .  

 

    This formula was not explicitly explained and derived in the course since 

most students had not studied integrals before the course in Physics 1. 

    We have an isotherm process with a gas with an amount of 5 moles that 

expands under constant temperature at 400 K from 3 litres under 6 

atmospheres to 9 litres under 2 atmospheres. What work is done by the gas?  
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W = n · R · T · ln(VF/V0) = 5 · 8,3145 · 400 · ln(9 litre/3 litre) =18 269 Joule 

The ideal gas law can be expressed as P·V = N · k · T where: 

P = absolute pressure in atmosphere  

V = volume (often in litres)  

n = Number of gas particles  

k = Boltzmann´s constant (1,38·10−23J·K−1) 

T = temperature in Kelvin 

The ideal gas law with SI-units is pressure Pascal, volume in m^3, N is n and 

in moles and k is replaced by R, the gas constant (8,314 J·1/K·1/mol): 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A PV graph of the work in a gas where we do not know the function. 

 

Theoretical Framework 
 

DGE as Amplifier and Reorganizer 
 

Two metaphors are often used in articles about technology in education, for 

example, that of technology being an ‘amplifier’ and a ‘reorganiser’ of mental 

activity (Pea, 1985, 1987). A DGE therefore plays the role of an ‘amplifier’ 

and a ‘reorganiser’ for developing students’ physical thinking. The term 

‘amplifier’ refers to the technology that performs tedious computations (time-

consuming to do by hand) quickly and accurately. Therefore, students can 

focus on making observations and developing insight rather than manual 

procedures. In this sense, the tool does not change students’ thinking but 

facilitates their explorations.  
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    Nevertheless, when technology is used as a reorganiser, it can extend 

students’ thinking by giving them access to higher-level processes. A DGE 

supports looking for patterns, identifying invariances or making and testing 

conjectures. In a paper-pencil environment, students spend significant time 

drawing and measuring objects. Pea’s theory of technology as an amplifier 

and reorganiser will be used to analyse the teaching of PV graphs and their 

relation to the GeoGebra applets. 

 

Visualisation and DGE: A Key Aspect in Developing Thinking 
 

A fundamental process in the understanding and construction of physical 

concepts is visualisation. Allowing the user to drag and manipulate objects, a 

Dynamic Geometry Environment will facilitate visualisation and conjecture 

formation. By doing that, it transforms the possibility for representation and 

has a positive impact on the conceptualisation of objects and internalising 

their meanings (Falcade, Laborde, & Mariotti, 2007) and (Moreno-Armella, 

Hegedus, & Kaput, 2008). The contribution of technology in teaching and 

learning mathematics and physics is perceived as strongly linked with 

dynamical interactive graphical representations (Laborde, Kynigos, 

Hollebrands, Strässer, 2006). 

    In a classroom, various representations, such as diagrams, drawings, and 

graphs, are used to teach physical concepts. Such multiple representations 

facilitate and enhance students’ understanding of physical concepts. 

Traditionally, physics was taught and learned in a pencil and paper 

environment (paper and pencil drawing for constructions) and textbooks 

providing iconic illustrations. A conceptual understanding of physics requires 

the development and flexibility of mental imagination. Textbooks with static 

diagrams cannot highlight figures' dynamic nature over physical situations.  

    DGE figures and shapes can be manipulated using the dragging feature 

which provides a dynamic opportunity to the learning of physics. It allows the 

user to perform investigations and thus affords the possibility of a dynamic 

visual representation of concepts in a physical sense. Those investigatory 

activities are hard to experience in a static environment such as paper and 

pencil (González & Herbst, 2009).   

    In a DGE, students can experiment with mathematical physics properties 

and thereby verify conjectures much more easily than in the traditional setting 

of paper and pencil. The main advantage of a DGE learning environment over 
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other environments is that students use complex figures and easily perform in 

real time a wide range of transformations on those figures, so students have 

access to a variety of examples that can hardly be matched by non-

computational or static computational environments. 

 

Theory of Variation: Dragging as a Tool in a DGE 
 

Forming mental images is a critical step to abstracting a physical concept. For 

example, to help students abstract the concept of a pV graphics, the teacher 

may present stories and perhaps drawings of adiabatic processes, hoping that 

the student will ‘see’ some common features among all the figures, the 

meaning of a pV graphic. In a DGE, the student may drag experience how we 

could change the value for the area and, through this continuous process, be 

able to ‘see’ the properties of the press-volume process, which remain 

invariant and those that vary. For example, an ideal gas with a volume of 3 or 

9 litres changes its pressure if we decrease or increase it. Therefore, the 

dragging tool is perhaps the most powerful feature of a DGE, as it allows the 

user to abstract an idea by observing the properties of figures, which remain 

invariant during the variation process. Leung (2003) aptly describes this 

affordance of a DGE. 
…..when engaging in learning activities or reasoning, one often tries 

to comprehend abstract concepts by some kind of “mental 

animation”, i.e. mentally visualising variations of conceptual objects 

in the hope of “seeing” patterns of variation or invariant properties. 

….. one of DGE’s power is to equip us with the ability to retain (keep 

fixed) a background configuration while we can selectively bring to 

the fore (via dragging) those parts of the whole configuration that 

interested us in a learning episode. 

    Over the years, many researchers have studied the role of dragging in DGE, 

focusing on how it can be instrumental in helping students construct figures 

using their properties, explore physical problems, formulate conjectures and 

even proofs. Arzarello, Olivero, Domingo & Ornella (2002), identified seven 

dragging modalities (wandering, guided, bound, dummy locus, line, linked, 

drag test) while trying to analyse conjecture-making episodes by students 

working on a problem.  
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Variation Theory 
 

Marton, & Booth (1997) proposed four inter-related functions of variation 

which they also referred to as patterns of variation. These are: 
Contrast: ‘‘… in order to experience something, a person must 

experience something else to compare it with.’’Generalisation: ‘‘… 

in order to fully understand what ‘‘a graph’’ is, we must also 

experience varying appearances of ‘‘a graph’’,…’’ 

Separation: ‘‘In order to experience a certain aspect of something, 

and in order to separate this aspect from other aspects, it must vary 

while other aspects remain invariant.’’ 

Fusion: ‘‘If there are several critical aspects that the learner has to 

take into consideration at the same time, they must all be experienced 

simultaneously.’’  

    They advocated that variation and simultaneity play an important role in 

the discernment of a concept. According to them, to discern and understand a 

concept, one must experience variations of it.  

 

Three Aspects of Fidelity 
 

While using technology to explore mathematical concepts and problems, 

assessing its pedagogical, mathematical, and cognitive fidelity is relevant. 

Zbiek et al. (2007) describe mathematical fidelity as  
faithfulness of the tool in reflecting the mathematical properties, 

conventions, and behaviors (as would be understood or expected by 

the mathematical community) (p.1173).  

    Let us consider the function f(x) = (x2 – 1)/(x – 1). Graphics calculators may 

produce the linear equation y = x + 1 if a graphics calculator graphs this 

function. This is inaccurate since the function f(x) is not defined at x = 1, and 

the correct f(x) graph should have a point break at x = 1. Thus, the 

mathematical fidelity of the tool is compromised in relation to graphing of the 

function.  

    Zbeik et al. describes Cognitive fidelity as: 
 … the faithfulness of the tool in reflecting the learner's thought 

processes or strategic choices while engaged in a mathematical 

activity (Zbiek et al., 2007, p.1173).  
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    A tool has cognitive fidelity if the produced external representations match 

the user’s internal representations and enhance their conceptual 

understanding. If appropriately used, a DGE has good cognitive fidelity.  

    The third kind of fidelity is that of Pedagogical fidelity, which, according 

to Zbeik et al., is:  
… the extent to which teachers (as well as students) believe that a 

tool allows students to act with a physics concept in ways that 

correspond to the nature of learning physic that underlies a teacher's 

practice (Zbiek et al., 2007, p.1187).  

    Pedagogical fidelity refers to the tool’s ability to support students’ 

explorations and learning. In a DGE, the dragging feature can afford this kind 

of fidelity. We can use sliders to vary the position of a point in a PV graph 

and observe the change in the graphical representation of an area for the work 

done by the gas. The level and degree of the types of fidelity vary among 

technology tools and should be considered while selecting and evaluating 

appropriate tools for students’ explorations. Fidelity must also be considered 

while designing exploratory tasks for students. 

    The theoretical frameworks described above may be classified into two 

categories. The four interrelated functions of variation focus on understanding 

students’ thinking and reasoning in a DGE environment, while Pea’s theory 

of amplifier and reorganiser and the three aspects of fidelity are related to the 

design and positioning of DGE based geometrical applets for learning physics. 

 

 

Methodology 
 

The course Physics 1 in a Swedish gymnasium is an overview of many areas 

of physics. It contains position, velocity, acceleration, forces, electrical fields, 

pressure, Archimedes principle, Einstein´s postulate, time dilation and 

relativistic energy, the fundamental forces, energy and energy resources, 

work, effect, potential and kinetic energy, mechanic, thermic, electric, and 

chemical energy, radiation and nuclear energy, the energy principle, entropy, 

degrees of efficiency, the quality of energy, and more. The domain of 

thermodynamics is often taught rapidly and in a couple of weeks.  

    There were two gymnasium schools in Sweden where the study took place. 

In one of the gymnasiums was the research group, and in the other was the 

group called the control group. Both groups of students studied Physics 1 with 
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the same textbook. The research group had 15 students, and the control group 

was 12. The control group were not given any dynamic explanation of the PV 

diagrams. Still, they were taught more traditionally with lectures by one 

teacher on the blackboard with the static images in the same textbook as the 

research group. 

    The thermodynamics was taught for 3 weeks with 10 hours to the research 

group of students. Every week the students in the research group had a lecture 

about a thermodynamical situation with a GeoGebra construction to visualise 

the situation. The students were allowed to explore the construction on the 

web or in GeoGebra if they had that program on the computer they used at 

home. All the students had a computer at home. At the end of the 

thermodynamics, we gave a test, and at the end of the Physics 1 course, we 

also gave a test with two questions from thermodynamics.  

    The research explored students’ interpretation and reasoning when 

analysing P-V graphics that were dynamically changeable. See Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A PV graph of the work in a gas where we can change the position of A, 

and B (You find the GeoGebra file at https://www.geogebra.org/m/axmp9ghg) 

 

    The students were given time to play with the construction. The students 

were asked questions like “Can you get a work of 12 units?” and “What is the 

unit for work of a gas?” and “What is the unit along the y-axis?”  

    An adiabatic process in thermodynamics is a process that appears without 

transferring heat or mass between the thermodynamic system and its 

environment. Unlike an isothermal process, an adiabatic process only 

transfers energy to the surroundings as works. The adiabatic process helps to 

explain the first law of thermodynamics. Therefore, the students were given 
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the following construction. It introduces the concept of temperature curves 

and sliders controlling the position of A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A PV graph of the work in a gas where we see the temperature curves 

(You find the GeoGebra file at Introducing Temperature Curves – GeoGebra) 

 

    In the third week, for the thermodynamic part of Physics 1, the students 

were given the construction in Figure 5, followed by a discussion about 

thermodynamical processes for 90 minutes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A PV graph of the work in a gas where we can select the isotherms and 

adiabatic curves (You find the GeoGebra file at "Thermophysics with PV graphics" 

– GeoGebra) 
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Results 
 

Altogether, five GeoGebra constructions were distributed and discussed with 

the 15 students in the research group. Some of the students reacted on the 

statement written in the GeoGebra construction in Figure 4. For a substance, 

during an adiabatic process in which the volume increases, the internal energy 

of the working substance must decrease. One asked me, “If the internal energy 

decrease, then the substance must be cooler.”  This is an interesting question. 

The substance can still cool down if there is no heat or mass transfer between 

the thermodynamic system and its environment.   

    On the last week of the three weeks, we had for the thermodynamic part of 

Physics 1, the students we given the construction in Figure 5 and the 

discussion about thermodynamic processes went on for 90 minutes.   

    At the end of the thermodynamic course, the research group’s 15 students, 

together with the control group’s 12 students, were given the following 

question: 
One Argon gas is expanded adiabatically from 0.01 m3 with the 

pressure 2 ·105 Pascal to 0.03 m3 with the pressure 4 ·105 Pascal. 

Calculate the work done by the gas.  

    Twelve of the 15 students in the research group managed to draw a PV 

graph, such as the one in Figure 6, while five students in the control group 

managed to do the same. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Argon gas is expanded adiabatically from 0.01 m3 with 2 ·105 Pascal to 

0.03 m3 with 4 ·105 Pascal. 

 

    Ten students in the research group and three in the control group calculated 

the work done by the gas as the area of the triangle where Area = 0.02·2·105/2 
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= 2·103.  Two of the students in the control group calculated the work with the 

formula W = p ·ΔV = 2·105·0.02 = 4·103. 

    At the end of the Physics 1 course, when the students were waiting for the 

national exam, we gave a preparation test covering most of the areas in 

Physics 1. The thermodynamic questions were formulated as follows: 
What work is done in the system below if we go the system as A → 

B → C → D → A. What is the work done in 50 cycles? 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. What work is done in the system below if we go the system as A → B → 

C → D → A? 

 
Solution (if we go left - right the work is positive while if we go right 

- left the work is negative.)  

Area = ΔP·ΔV = 6·105 · 0,06m3 

Work = 36 000 Joule 

Look at the different parts of the cycle  

We have that WA → WB = WC→WD = 0 

While WB→WC = 48 000 Joule  

and WD→WA = -12000 Joule.  

Every cycle gives a positive result of 36 000 Joule. 

That gives that 50 cycles are 50 · 36 000 = 1 800 000 J 

    The other thermodynamic question was to explain the words isobaric, 

isotherm, and isochoric together with what adiabatic stands for.  

    Altogether we, the two teachers at that gymnasium, considered it obvious 

that the dynamic constructions in GeoGebra helped the students to understand 

the structure of pV graphics. 
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Discussion 

 
In this study, I was interested in students’ interpretations and ability to read 

the features of the graph, to read between the features of the graph and to read 

beyond the features of the graph (Friel et al., 2001). Would it help them to get 

GeoGebra constructions? 

    The GeoGebra applets for the thermodynamics in the Figure 1 and Figure 

2 and the applet in Figure 3 form a ground for the physics we use later in the 

article. In this regard, these applets may be considered to have a high level of 

physical fidelity.  

    The applets also had a degree of cognitive fidelity since they assist our 

thought processes while we engage in the physical thinking of pV graphics. 

The applets, with their physical and cognitive fidelity, create an environment 

which enables us to use them to make a conjecture about ideal gas in a process.  

Finally, the applets also had a high level of pedagogical fidelity as they help 

us to further our exploration and learning. The applets encourage the 

participation of the readers. The fidelity of technological tools is an important 

criterion while evaluating their use in the classroom for physical exploration 

and learning. 

    When visualising pV graphics, students are in a new position. The 

coordinate system should be interpreted before analysing the geometry in the 

pV graphics. In the GeoGebra construction, you can vary the area of the work 

by moving points. By doing this in a teaching sequence or for students doing 

it by themselves, they will learn through the variation and amplify and 

reorganise their conceptual understanding. 

    GeoGebra enabled applets may very well function as amplifiers and 

reorganisers in enabling students to explore the fundamental concepts related 

to pV graphics. The essential characteristic (of the GeoGebra applets) is that 

the position of a point is something completely else on the screen teachers 

must keep in mind while preparing tasks that function as amplifiers or 

reorganisers in enabling students’ understanding of concepts of pV graphics. 

Teachers should use the applets to introduce and discuss the concepts of pV 

graphics, scaffolding students’ explorations and helping them develop the 

concepts.  

    The three cognitive conditions in the framework of Friel et al. (2001)—to 

read the features of the graph, to read between the features of the graph and to 
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read beyond the features of the graph—have been identified amongst student’s 

responses. My findings, based on this and previous studies, indicate that 

discussing and teaching students about scientific concepts may help them 

learn and understand the mathematical construction of science processes such 

as pV graphics. Helping students understand the challenging topics in science 

and mathematics through ontology training may facilitate the learning 

process. 

    For the students in the research group, we also see evidence of DGE acting 

as an amplifier. Dragging points A and point B, in Figure 3, enabled the 

students to see how the work of the gas was recalculated quickly. Thus, the 

dragging feature led them to visualise their ‘mental calculation’ quickly and 

efficiently. As an amplifier, the applet enabled the students to visualise the 

areas as the work by the gas. In this process, the applet played the role of a 

reorganiser. Here the focus of students’ thinking shifted from viewing the pV 

graphics as a graph over to viewing it as a work by a gas. Hence, I found ample 

evidence of the GeoGebra applets playing the role of amplifier and reorganiser 

in the tasks with pV graphics. 

    The dragging feature of a DGE enables students to explore, experiment, 

observe variations and invariances, and verify the permanence or lack of 

permanence of mathematical properties, leading to conjecture-making more 

easily than in other digital environments where dragging is impossible. Such 

dynamism is missing in the more traditional paper and pencil environment. In 

a DGE learning environment, students can use constructions of a pV graphics 

and change it until the hidden relations are obvious to the viewer. Such an 

affordance can hardly be matched by non-computational or static 

computational environments (Marrades & Gutiérrez, 2000, p. 96). In this 

study, the students in the research group used the dragging feature of the 

GeoGebra applet to try various possibilities of adjusting the geometrical 

shapes representing the area of the pV graphics. This enabled them to explore 

different positions quickly, a fact which supports Pea’s (1987) metaphor of 

technology as an amplifier. A DGE like GeoGebra can provide students access 

to multiple solutions in a short span of time.  
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Limitations 

 
This is just a small case study, not anything that can be used as an argument. 

This is just a new way to teach physics.   
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