Hacia un campo de prácticas sociales como fundamento para rediseñar el discurso escolar del cálculo integral
Tipo de documento
Autores
Lista de autores
Muñoz-Ortega, Germán
Resumen
Partimos de una problemática que consiste en la separación entre lo conceptual y lo algorítmico en la enseñanza del Cálculo integral. Para atender la problemática de acuerdo a su naturaleza, nos apoyamos en la aproximación teórica llamada socioepistemología así como también nos auxiliamos de la teoría de los campos conceptuales. Con base en lo anterior presentamos una especie de campo de prácticas sociales organizado alrededor de tres ejes: predicción, acumulación y constantificación de lo variable.. Ha sido necesario construir el campo, en la medida de lo posible, desde diversos planos: la génesis histórica, la génesis contemporánea y la génesis artificial. Para finalizar, argumentamos sobre la viabilidad de considerar a las prácticas sociales como unidad de análisis para rediseñar el discurso matemático escolar, en particular del Cálculo integral. De manera que la predicción (inmersa en un campo de prácticas sociales) por su naturaleza va entretejiendo los conocimientos sin una frontera rígida entre conceptos, sin un orden lineal, y que trasciende el dominio de la matemática.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Conocimiento | Discurso | Diseño | Epistemología | Integración | Teoría social del aprendizaje
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
13
Número
4_2
Rango páginas (artículo)
283-302
ISSN
16652436
Referencias
Alanís, J. A. (1996). La Predicción: un hilo conductor para el rediseño del discurso escolar del Cálculo.. Tesis de doctorado, Cinvestav-IPN, México. Cantoral, R. (1983). Procesos del cálculo y su desarrollo conceptual conceptual. Tesis de Maestría en Ciencias. Cinvestav-IPN. Sección de Matemática Educativa. México. Cantoral, R. (1990). Desequilibrio y equilibración. Categorías relativas a la apropiación de una base de significaciones propias del pensamiento físico para conceptos y procesos matemáticos de la teoría elemental de las funciones analíticas. Tesis de doctorado, Cinvestav-IPN, México. Cantoral, R. (2001). Matemática Educativa: Un estudio de la formación social de la Analiticidad. México: Grupo Editorial Iberoamérica. Cantoral, R. (2004). Desarrollo del pensamiento y lenguaje variacional, una mirada socioepistemológica. Acta Latinoamericana de Matemática Educativa 17 (1), 1-9. Chevallard, Y; Bosch, M; Gascón, J. (1997). Estudiar Matemáticas: El eslabón perdido entre enseñanza y aprendizaje. España: Ed. ICE Horsori. Cordero, F. (1994). Cognición de la Integral y la construcción de sus significados: un estudio del Discurso Matemático Escolar. Tesis de Doctorado, Cinvestav-IPN, México. Cordero, F. (2001). La distinción entre construcciones del Cálculo. Una epistemología a través de la actividad humana. Revista Latinoamericana de Investigación en Matemática Educativa 4 (2), 103-128. Cordero, F. (2003). Reconstrucción de significados del Cálculo integral: La noción de acumulación como una argumentación. México: Grupo Editorial Iberoamérica. Cordero, F. (2005). El rol de algunas categorías del conocimiento matemático en educación superior. Una socioepistemología de la integral. Revista Latinoamericana de Investigación en Matemática Educativa 8 (3), 265-285. Farfán, R. (1997). Ingeniería didáctica: un estudio de la variación y el cambio. México: Grupo Editorial Iberoamérica. García, R. (2000). El conocimiento en construcción. De las formulaciones de Piaget a la teoría de sistemas complejos. España: Gedisa. Heath, T. L. (1953). The works of Archimedes. USA: Dover Publications (reprint of 1897 ed.). Hernández, H. (2006). Una visión socioepistemológica de la matematización del movimiento: del binomio de Newton a la serie de Taylor. Tesis de Maestría. Universidad Autónoma de Chiapas, México. Lenkersdorf, C. (2002). Tojolabal para principiantes. Lengua y cosmovisión mayas en Chiapas. México: Plaza y Valdés, segunda edición. Marcolini, M. y Perales, J. (2005). La noción de predicción: Análisis y propuesta didáctica para la educación universitaria. Revista Latinoamericana de Investigación en Matemática Educativa 8 (1), 25-68. Muñoz, G. (2005a). Dialéctica entre lo conceptual y lo algorítmico relativa a prácticas sociales con Cálculo integral. En J. Lezama, M. Sánchez, J. G. Molina (Eds.), Acta Latinoamericana de Matemática Educativa 18,, 597-603. México: Clame A.C. Muñoz, G. (2005b). Naturaleza de un campo conceptual del Cálculo infinitesimal: una visión epistemológica. En J. Lezama, M. Sánchez, J. G. Molina (Eds.), Acta Latinoamericana de Matemática Educativa 18, 589-595. México: Clame A.C. Muñoz, G. (2006a). Dialéctica entre lo conceptual y lo algorítmico relativa a un campo de prácticas sociales asociadas al Cálculo integral: aspectos epistemológicos, cognitivos y didácticos. Tesis de doctorado en ciencias, Departamento de Matemática Educativa del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México. Muñoz, G. (2006b). Relación dialéctica entre lo conceptual y lo algorítmico relativa a un campo de prácticas sociales asociadas al Cálculo integral. En R. Cantoral, O. Covián, R. Farfán, J. Lezama & A. Romo (Eds.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas: un reporte Iberoamericano (pp. 423-451). México: Clame A.C. y Ediciones Díaz de Santos. Muñoz, G. (2007). Rediseño del Cálculo integral escolar fundamentado en la Predicción. En C. Dolores, G. Martínez, R. Farfán, C. Carrillo, I. López & C. Navarro (Eds.), Matemática Educativa: Algunos aspectos de la socioepistemología y la visualización en el aula (pp. 27-76). Madrid: Ediciones Díaz de Santos; Guerrero: Universidad Autónoma de Guerrero. Muñoz, G. (2010). Una Resignificación de las Ecuaciones Diferenciales, fundamentada en la Predicción: elementos Epistemológicos, Cognitivos y Didácticos. México: Universidad Autónoma de Chiapas (Colección libros de consulta para Ciencia y Tecnología). Piaget, J. & García R. (1994). Psicogénesis e Historia de la Ciencia (6a. ed.). México: Siglo XXI. Ramos, S. E. (2005). Análisis socioepistemológico de los procesos de matematización de la predicción en la Economía. Tesis de Maestría en Ciencias. Universidad Autónoma de Chiapas, México. Vergnaud, G. (1981). Quelques Orientations Theoriques et Methodologiques des Recherches Francaises en Didactique des Mathematiques. Proceedings of the International Group for the Psychology of Mathematics Education (pp. 7-17). Vergnaud, G. (1990a). La Théorie des Champs Conceptuels. Recherches en Didactique des Mathématiques 10 (13), 133-170. Vergnaud, G. (1990b). Epistemology and Psychology of Mathematics Education. En Nesher y Kilpatrick (Eds.), Mathematics and Cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education (p. 14-30). Cambridge:University Press. Vergnaud, G. (1991). El niño, las matemáticas y la realidad. México: Editorial Trillas. Vergnaud, G. (1998). Towards a Cognitive Theory of Practice. En Sierpinska, A. y Kilpatrick, J. (Eds.), Mathematics Education as a Research Domain: A Search for Identity (pp. 227240). Great Britain: Kluwer Academic Publishers. Vygotski, L. S. (1982). Obras Escogidas II. Incluye Pensamiento y Lenguaje, y Conferencias sobre Psicología. España: Ed. Visor. Wertsch, J. V. (1993). Voces de la Mente. Un enfoque sociocultural para el estudio de la Acción Mediada. España: Ed. Visor.