The impact of visualization on flexible Bayesian reasoning
Tipo de documento
Lista de autores
Böcherer-Linder, Katharina, Eichler, Andreas y Vogel, Markus
Resumen
There is wide consensus that visualizations of statistical information can support Bayesian reasoning. This article focusses on the conceptual understanding of Bayesian reasoning situations and investigates whether the tree diagram or the unit square is more appropriate to support the understanding of the influence of the base rate, which is introduced as being a part of flexible Bayesian reasoning. As a statistical graph, the unit square reflects the influence of the base rate not only in a numerical but also in a geometrical way. Accordingly, in two experiments with undergraduate students (N = 148 and N = 143) the unit square outperformed the tree diagram referring to the understanding of the influence of the base rate. Our results could inform the discussion about how to visualize Bayesian situations and has practical consequences for the teaching and learning of statistics.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Cálculo de probabilidades | Comprensión | Conocimiento | Razonamiento | Visualización
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
11
Rango páginas (artículo)
25-46
ISSN
22544313
Referencias
Bar-Hillel, M. (1980). The base-rate fallacy in probability judgements. Acta Psychologica, 44, 211-233. Bea, W. (1995). Stochastisches Denken [Stochastical Reasoning]. Frankfurt, Peter Lang. Binder, K., Krauss, S., & Bruckmaier, G. (2015). Effects of visualizing statistical information an empirical study on tree diagrams and 2 × 2 tables. Frontiers in Psychology, 6, 1186. doi:10.3389/fpsyg.2015.01186. Böcherer-Linder, K., & Eichler, A. (2015). Vergleich konkurrierender Visualisierungen zum Bereich der bedingten Wahrscheinlichkeiten [Comparison of competing visualizations in the field of conditional probabilities]. In F. Caluori, H. Linneweber-Lammerskitten, & C. Streit (Eds.), Beiträge zum Mathematikunterricht (pp. 176 - 179). Münster: WTM-Verlag. Böcherer-Linder, K. & Eichler, A. (in press). The impact of visualizing nested sets. An empirical study on tree diagrams and unit squares. Frontiers in Psychology, Cognition. Böcherer-Linder, K., Eichler, A., & Vogel, M. (2015). Understanding conditional probability through visualization. In H. Oliveira, A. Henriques, A. P. Canavarro, C. Monteiro, C. Carvalho, J. P. Ponte, R. T. Ferreira, S. Colaço (Eds.), Proceedings of the International Conference Turning data into knowledge: New opportunities for statistics education (pp. 14–23). Lisbon, Portugal: Instituto de Educação da Universidade de Lisboa. Borovcnik, M. (2012). Multiple perspectives on the concept of conditional probability. AIEM. Avances de Investigación en Educación Matemática, 2, 5-27. Brase, G. L. (2009). Pictorial representations in statistical reasoning. Applied Cognitive Psychology, 23(3), 369–381. doi:10.1002/acp.1460. Brase, G. L. (2014). The power of representation and interpretation: Doubling statistical reasoning performance with icons and frequentist interpretations of ambiguous numbers. Journal of Cognitive Psychology, 26(1), 81–97. doi:10.1080/20445911.2013.861840. Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all?: Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58(1), 1–73. doi:10.1016/0010-0277(95)00664-8. Curcio, F. R. (1989). Developing graph comprehension. Reston, VA: N.C.T.M. Díaz, C., Batanero, C., & Contreras, J, M. (2010). Teaching independence and conditional probability. Boletín de Estadística e Investigación Operativa 26 (2), 149-162. Eichler, A., & Vogel, M. (2010). Die (Bild-) Formel von Bayes [The (picture-) formula of Bayes]. PM: Praxis der Mathematik, 52(32), 25–30. Ellis, K. M., Cokely, E. T., Ghazal, S., & Garcia-Retamero, R. (2014). Do people understand their home HIV test results? Risk literacy and information search. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 58 pp. 1323–1327) London: Sage. doi: 10.1177/1541931214581276 Gigerenzer, G. (1994). Why the distinction between single-event probabilities and frequencies is important for psychology (and vice versa). In G. Wright & P. Ayton (Eds.), Subjective probability (pp. 129 –162). Chichester, UK: Wiley. Gigerenzer, G. & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684–704. doi:10.1037/0033-295X.102.4.684. Hiebert, J., & Lefevre, P (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and Procedural Knowledge: The case of Mathematics. (pp. 1 – 27). Hillsdale, NJ: Lawrence Erlbaum. Hoffrage, U., Gigerenzer, G., Krauss, S., & Martignon, L. (2002). Representation facilitates reasoning: what natural frequencies are and what they are not. Cognition 84, 343–352. doi: 10.1016/S0010-0277(02)00050-1. Kahneman, D., & Tversky, A. (1996). On the reality of cognitive illusions. Psychological Review, 103 (3), 582 – 591. Kurz-Milcke, E., Gigerenzer, G., & Martignon, L. (2008). Transparency in risk communication: Graphical and analog tools. Annals of the New York Academy of Sciences, 1128, 18-28. Mandel, D. R. (2014). The psychology of Bayesian reasoning. Frontiers in Psychology, Cognition. 5, 1144. doi: 10.3389/fpsyg.2014.01144. Navarrete, G., Correia, R., & Froimovitch, D. (2014). Communicating risk in prenatal screening: the consequences of Bayesian misapprehension. Frontiers in psychology, cognition. 5, 1272. doi: 10.3389/fpsyg.2014.01272. Oldford, R. W. (2003). Probability, problems, and paradoxes pictured by eikosograms. Occasional paper. Retrieved from www.stats.uwaterloo.ca/~rwoldfor/papers/venn/eikosograms/examples/paper.pdf. Sedlmeier, P., & Gigerenzer, G. (2001). Teaching Bayesian reasoning in less than two hours. Journal of Experimental Psychology: General, 130 (3), 380–400. doi:10.1037//0096-3445.130.3.380 Siegrist, M. & Keller, C. (2011). Natural frequencies and Bayesian reasoning: the impact of formal education and problem context. Journal of Risk Research 14, 1039–1055. doi: 10.1080/13669877.2011.571786 Spiegelhalter, D., & Gage, J. (2014). What can we learn from real-world communication of risk and uncertainty? In K. Makar (Ed.) Proceedings of the Ninth International Conference on Teaching Statistics. Flagstaff, USA: International Statistical Institute. Retrieved from icots.info/icots/9/proceedings/pdfs/ICOTS9_PL2_SPIEGELHALTER.pdf Sturm, A., & Eichler, A. (2014). Students’ beliefs about the benefit of statistical knowledge when perceiving information through daily media. In K. Makar, B. de Sousa, & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9), Flagstaff, AR: International Association of Statistics Education. Retrieved from http://icots.info/icots/9/proceedings/pdfs/ICOTS9_7D1_STURM.pdf Tufte, E. R. (2013). The visual display of quantitative information (2nd ed). Cheshire, CT: Graphics Press. Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty: Heuristics and biases. Science, 4157 (185), 1124 – 1131. Veaux, R. D. de, Velleman, P. F., & Bock, D. E. (2012). Intro stats (3rd ed). Boston MA: Pearson/Addison-Wesley.