Razonamiento algebraico elemental: propuestas para el aula
Tipo de documento
Autores
Lista de autores
Castro, Walter
Resumen
En este artículo se aborda el problema de la enseñanza de álgebra en la escuela primaria. Se discute lo que se entiende como “early álgebra” y se presentan varios enfoques sobre la introducción del álgebra en la escuela elemental. En correspondencia con los enfoques, se discuten tanto algunas tareas de razonamiento algebraico elemental que pueden ser implantadas en el aula, como algunas de las características algebraicas atribuidas. Finalmente, se presenta una propuesta para asignar niveles o grados de algebrización a algunas tareas.
Fecha
2014
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Currículo | Pruebas | Razonamiento
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Amit M., Neria D. (2008). Rising to the challenge: using generalization in pattern problems to unearth the algebraic skills of talented pre algebra students. ZDM. The International Journal on Mathematics Education, 40(1), 11-119. Bass, H. (1998). Algebra with integrity and reality. In M. S. E. Board (Ed.), The nature and role of algebra in the K-14 curriculum: Proceedings of the National Research Council Symposium. Washington DC: National Research Council. Blanton, M. L., and Kaput, J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 36(5): 412-446. Becker, J. R. and Rivera, F. D. (2008). Generalization in algebra: The foundation of algebraic thinking and reasoning across the grades. ZDM The international Journal on Mathematics Education, 40(1), 1. Britt, M. and Irwin, K. (2008). Algebraic thinking with and without algebraic representation: a three-year longitudinal study. Zentralblatt fuer Didaktik der Mathematic, 40(1), 39-53. Brizuela, B. M. and Earnest, E. (2008). Multiple notational systems and algebraic understandings: The case of the "Best Deal" problem. In J. J. Kaput, D. W. Carraher and M. L. Blanton (Eds.), Algebra in the early grades. New York: Routledge. Burkhardt, H. (2001). Algebra for all: What does it mean? How are we doing? In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), The future of the teaching and learning of algebra (Vol. 1). Melbourne: University of Melbourne, Australia. Cai, J. (2004). Developing algebraic thinking in the earlier grades: A case study of the chinese elementary school curriculum. The Mathematics Educator, 8(1), 107-130. Carraher, D. W. and Schlieman, A. (2007). Early Algebra and Algebraic Reasoning. In F. Lester y K. Jr (Eds.), Second Handbook of Research on Mathematics Teaching and Learning (Vol. 2). NCTM. Common Core State Standards Initiative. (2010). Common Core State Standards for mathematics. Access: December 2010. Available: http://www.corestandards.orgiassets/CCSSI_Math%20Standards.pdf Davis, R. B. (1985). ICME-5 Report: Algebraic thinking in the early grades. Journal of Mathematical Behavior, 4, 195-208. Derry, S. J., Wilsman, M. J. and Hackbarth, A. J. (2007). Using Constrasting Case Activities to Deepen Teacher Understanding of Algebraic Thinking and Teaching. Mathematical Thinking and Learning, 9(3), 305-329. Godino, J; Castro, W.F; Ake Lilia y Wilhelmi, M. (2012). Naturaleza del Razonamiento Algebraico Elemental. Bolema (Boletín de Educación Matemática, Revista Brasileña), 26, (42B),559-588 Godino, J.D., Aké, L.P., Gonzato, M. y Wilhelmi, M.R. (2012). Niveles de razonamiento algebraico elemental. En A. Estepa, Á. Contreras, J. Deulofeu, M. C. Penalva, F. J. García y L. Ordóñez (Eds.), Investigación en Educación Matemática XVI. Jaén: SEIEM Goldenberg, E. P. (1988). Mathematics, metaphors and human factors: Mathematical, technical and pedagogical challenges in the educational use of graphical representations of functions. Journal of Mathematical Behavior, 7, 135-173. Joint Mathematical Council of the United Kingdom. (1996). Teaching and learning algebra pre-19. London: Royal Society/JMC Working Group. Juraschek, B. and Angle, N. S. (1986). The binomial grid. Mathematics Teacher, 5, 337-339. Kaput, J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by algebrafying the K-12 curriculum: National Center of Improving Student Learning and Achievement in Mathematics and Science. Dartmouth, MA. Kaput, J. (Ed.). (1998). Transforming algebra from an engine of inequity to an engine of mathematical power by algebrafying the K-12 curriculum. Washington D.C: National Academy Press. Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J.Alvarez, C. Hodgson, C. Laborde and A. Pérez (Eds.), 8th International Congress on Mathematical Education: Selected lectures. Seville, Spain: S.A.E.M. Thales. NCTM. (1998). Principles and standards in school mathematics: Discussion draft. Reston (Virginia): NCTM. Rival, I. (1987). Picture puzzling:mathematicians are rediscovering the power of pictorial reasoning. Sciences, 27(1): 40-46. Schifter, D., Monk, S., Russell, S. J. and Bastable, V. (2008). Early algebra: What doesunderstanding the laws of arithmetic mean in the elementary grades? In J. Kaput, D. Carraher and M. Blanton (Eds.), Algebra in the early grades. Mahwah, NJ: Lawrence Erlbaum Associates. Smith, J. B. (1996). Does an extra year make any difference? The impact of early access to algebra on long-term gains in mathematics achievement. Educational Evaluation and Policy Analysis, 18(2), 141-153. Strother, S.A. (2011). Algebra knowledge in early elementary school supportinglater mathematics ability. University of Louisville. Tesis Doctoral. Stylianou, D. A. (2002). On the interaction of visualization and analysis: the negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 21, 303-317 Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford (Ed.), The Ideas of Algebra K-12,. Reston, VA: NCTM.