Construcciones SERLIST y SERFUNC de series infinitas
Tipo de documento
Lista de autores
Martínez-Planell, Rafael, González, Ana, Yumet, Gladys y Acevedo, Vanessa
Resumen
Éste es un estudio de cómo construyen estudiantes universitarios la noción de serie infinita como sucesión de sumas parciales. Usando la teoría Acción-Proceso-Objeto-Esquema (APOE), se muestra cómo los estudiantes suelen construir dos objetos cognitivos diferentes que describimos en el artículo y que denominamos SERLIST y SERFUNC. Esencialmente, en la conceptuación SERLIST se percibe una serie como una suma infinita, mientras que en la conceptuación SERFUNC, ésta se percibe como una sucesión de sumas parciales. Las nociones SERLIST y SERFUNC generalizan nociones análogas anteriormente usadas en el caso de sucesiones infinitas. El estudio cualitativo está basado en entrevistas semiestructuradas a 14 estudiantes de pregrado. Hallamos que 12 de los 14 estudiantes entrevistados tuvieron gran dificultad en construir una noción de serie como sucesión de sumas parciales. Nuestro estudio sugiere algunas actividades que podrían ayudar a remediar esta dificultad.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Dificultades | Otra (teorías) | Otro (tipos estudio) | Sucesiones y series
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Asiala, M., A. Brown, D. J. DeVries, E. Dubinsky, D. Mathews y K. Thomas (1996), “A framework for research and development in undergraduate mathematics education”, en J. Kaput, E. Dubinsky y A. H. Schoenfeld (eds.), Research in Collegiate Mathematics Education II, Providence, American Mathematical Society, pp. 1-32. Bagni, G. T. (2000), “Difficulties with series in history and in the classroom”, en J. Fauvel y J. van Maanen (eds.), History in mathematics education: the ICMI study, Dordrecht, Kluwer Academic Publishers, pp. 82-86. Bagni, G. T. (2005), “Infinite series from history to mathematics education”, International Journal for Mathematics Teaching and Learning [revista en línea], University of Plymouth, Reino Unido, leído el 30 de junio de 2005 en http://cimt.plymouth.ac.uk/journal/default.htm. Baker, B., L. Cooley y M. Trigueros (2000), “The schema triad —a calculus example”, Journal for Research in Mathematics Education, vol. 31, pp. 557-578. Brown, A., D. DeVries, E. Dubinsky y K. Thomas (1998), “Learning binary operations, groups, and subgroups”, Journal of Mathematical Behavior, vol. 16, núm. 3, pp. 187-239. Cooley, L., M. Trigueros y B. Baker (2007), “Schema thematization: a framework and an example”, Journal for Research in Mathematics Education, vol. 38, pp. 370-392. Czarnocha, B., E. Dubinsky, V. Prabhu y D. Vidakovic (1999), “One theoretical perspective in undergraduate mathematics education research”, en O. Zaslavsky (ed.), Proceedings of the 23rd Conference of PME , vol. 1, Haifa, PME, pp. 95-110. Czarnocha, B., E. Dubinsky, S. Loch, V. Prabhu y D. Vidakovic (2001), “Conceptions of area: in students and in history”, The College Mathematics Journal, vol. 32, núm. 2, pp. 99-109. Dubinsky, E. (1991), “Reflective abstraction in advanced mathematical thinking”, en D. Tall (ed.), Advanced Mathematical Thinking, Dordrecht, Kluwer Academic Press, pp. 95-123. ————————– (1994), “A theory and practice of learning college mathematics”, en A. Schoenfeld (ed.), Mathematical Thinking and Problem Solving, Hillsdale, Erlbaum, pp. 221-243. ————————– (1996), “Una aplicación de la perspectiva piagetiana a la educación matemática postsecundaria”, Educación Matemática, vol. 3, núm 8, pp. 24-45. Dubinsky, E., K. Weller, M. A. McDonald y A. Brown (2005), “Some historical issues and paradoxes regarding the concept of infinity: an APOS analysis, Part 1”, Educational Studies in Mathematics, vol. 58, núm. 3, pp. 335-359. Dubinsky, E. y O. Yiparaki (2000), “On student understanding of AE and EA quantification”, en E. Dubinsky, A. H. Schoenfeld y J. Kaput (eds.), Research in collegiate mathematics education IV, Providence, American Mathematical Society, pp. 239-289. Fishbein, E., D. Tirosh y U. Melamed (1981), “Is it possible to measure the intuitive acceptance of a mathematical statement?”, Educational Studies in Mathematics, vol. 12, pp. 491-512. Gray, E. M. y D. O. Tall (1987), “Duality, flexibility, and ambiguity: a proceptual view of elementary arithmetic”, Journal for Research in Mathematics Education, vol. 25, núm. 2, pp. 116-140. Kline, M. (1972), Mathematical Thought from Ancient to Modern Times, vol. 2, Nueva York, Oxford University Press. Mamona, J. C. (1990), “Sequences and series-sequences and functions: students’ confusions”, International Journal of Mathematical Education in Science and Technology, vol. 21, pp. 333-337. Martínez-Planell, R. y M. Trigueros (2009), “Students’ ideas on functions of two variables: domain, range, and representations”, en S. L. Swars, D. W. Stinson y S. Lemons-Smith (eds.), Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, vol. 5, Atlanta, Georgia State University, pp. 73-80. McDonald, M. A., D. Mathews y K. Strobel (2000), “Understanding sequences: a tale of two objects”, en E. Dubinsky, A. H. Schoenfeld y J. Kaput (eds.), Research in Collegiate Mathematics Education IV, Providence, American Mathematical Society, pp. 77-102. Piaget, J. y R. García (1983), Psicogénesis e historia de la ciencia, México, Siglo XXI Editores. Przenioslo, M. (2006), “Conceptions of a sequence formed in secondary school”, International Journal of Mathematical Education in Science and Technology, vol. 37, núm. 7, pp. 805-823. Sierpin ́ska, A. (1987), “Humanities students and epistemological obstacles related to limits”, Educational Studies in Mathematics, vol. 18, núm. 4, pp. 371-397. Smith, D. E. (1958), History of Mathematics, vol. 2, Nueva York, Dover Publications. Stewart, J. (2001), Calculus: Concepts and Contexts, 2a. ed., Pacific Grove, Brooks/Cole. Tall, D. O. (1992), “The transition to advanced mathematical thinking: functions, limits, infinity, and proof”, en D. A. Grouws (ed.), Handbook of Research on Mathematics Teaching and Learning, Nueva York, McMillan, pp. 495-511. Trigueros, M. (2000), “Students’ conception of solution curves and equilibrium in systems of differential equations”, en M. L. Fernandez (ed.), Proceedings of the XXII Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Columbus, ERIC, pp. 93-97. ————————– (2005), “La noción de esquema en la investigación en matemática educativa a nivel superior”, Educación Matemática, vol. 17, núm. 1, pp. 5-31. Trigueros, M. y R. Martínez-Planell (2010), “Geometrical representations in the learning of two variable functions”, Educational Studies in Mathematics, vol. 73, núm. 1, pp. 3-19.