Una propuesta de uso de un Classroom Response System (CRS) para promover clases interactivas de Cálculo en la universidad
Tipo de documento
Autores
Barragués, José | Guisasola, Jenaro | Juncal, María | Morais, Adolfo
Lista de autores
Barragués, José, Morais, Adolfo, Juncal, María y Guisasola, Jenaro
Resumen
La concepción actual de lo que significa enseñar y aprender Matemáticas sostiene que los estudiantes deben aprender construyendo activamente nuevos significados a partir de la experiencia y el conocimiento previos. Esta concepción exige realizar un seguimiento del aprendizaje y de las tareas realizadas, desarrollar en el aula actividades que permitan poner en práctica los conceptos clave en problemas prácticos, etc. En este contexto, los Classroom Response System (CRS) están investigándose por su potencial para mejorar la comunicación entre el profesor y los estudiantes. En el presente estudio se describe el modo en que se ha implementado y evaluado un CRS en la Universidad del País Vasco (España) para la enseñanza de Cálculo en estudios de Ingeniería con grupos amplios de estudiantes. Los estudiantes valoraron positivamente la enseñanza recibida y, además, se observó una ganancia media normalizada en el aprendizaje significativamente superior a la obtenida por un grupo de estudiantes que recibió una enseñanza convencional.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Cálculo | Otra (modalidad) | Reflexión sobre la enseñanza | Resolución de problemas | Software
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Referencias
Abrahamson, L. (2009). A brief history of networked classrooms: effects, cases, Pedagogy and Implications. En Banks, D. A. (Ed.) Audience Response Systems in Higher Education. Hershey, PA, Information Science Publishing, pp. 1-25. Anderson, R. D. y Loftsgaarden, D. (1987), A Special Calculus Survey: Preliminary Report. En Steen, L. A. (Ed.), Calculus for a New Century: A Pump Not a filter, MAA Notes 8, Mathematical Association of America, Washington DC, pp. 215-216. Artigue, M. (1995). La enseñanza de los principios del cálculo: problemas epistemológicos, cognitivos y didácticos. En Gómez, P. (Ed.) Ingeniería Didáctica en Educación Matemática, México, Grupo Editorial Iberoamericano, pp. 97-140. Balacheff, N. y Sutherland, R. (1994). Epistemological Domain of Validity of Microworlds, The Case of Logo and Cabri-géomètre. En Lewis, R. y Mendelsohn, P. (Eds.), Lessons from Learning, Amsterdan, North-Holland/ Elsevier Science, pp. 137-150. Balacheff, N. y Kaput, J. J. (1996). Chapter 13: Computer-Based Learning Environmments in Mathematics. En Bishop, A. J., Clements K., Keitel, C., Kilpatrick, J. y Laborde, C. (Eds.), International Handbook of Mathematics Education, The Netherlands: Kluwer Academic Publishers, pp. 469-501. Ball, D. L. (1993). With an eye on mathematical horizon: dilemmas of teaching elementary mathematics. En The elementary School Journal, 93 (4), pp. 373-397. Banks, D. A. (2009). Audience Response Systems in Higher Education, Hershey, P. A., Information Science Publishing. Barnes, M. (1988). Understanding the Function Concept: Some Results of Interviews with Secondary and Tertiary Students. En Research on Mathematics Education in Australia, May, pp. 24-33. Barragués, J. I., Arrieta, I. y Manterola, J. (2010). Análisis Matemático con soporte interactivo en Moodle, Madrid, Pearson Educación. Barragués, J. I., Morais, A., Manterola, J. y Guisasola, J. (2011). Use of a Classroom Response System (CRS) for teaching Mathematics in Engineering with large groups. En Mendez-Vilas, A. (Ed.), Education in a technological world: communicating current and emerging research and technological efforts, FORMATEX, pp. 572-580. Recuperado de http://www.formatex.info/ict/book/572-580.pdf. Fecha de acceso, julio de 2012. Barrel, J. (1999), Aprendizaje basado en Problemas, un Enfoque Investigativo, Buenos Aires, Editorial Manantial. Barrows, H. (1986). A Taxonomy of problem based learning methods. En Medical Education, vol. 20, pp. 481-486. Bingolbali, E. y Monaghan, J. (2008), Concept image revisited. En Educational Studies in Mathematics, 68(1), pp. 19-35. Blomhøj, M. y Kjelden, T. H. (2010). Learning mathematics through modelling. The case of the integral concept. En Bharath, S. et al. (Eds.), The first sourcebook on Nordic Research in Mathematics Education, MT, Information Age Publishing and The Montana Council of Teachers of Mathematics, pp. 569-581. Bode, M., Drane, D., Kolikant, Y. y Schuller, M. (2009). A Clicker Approach to Teaching Calculus. En Notices of the AMS, 56 (2), pp. 253-256. Bruff, D. (2010). Classroom Response System (Clickers) Bibliography. Recuperado de http://www.vanderbilt.edu. Fecha de acceso, mayo de 2011. Burn, R. P. (2002). The genesis of mathematical structures. En Kahn, P. (Ed.), Effective learning and teaching in mathematics and its applications, London, Koan Page, pp. 20-33. Crouch, C. H. y Mazur, B. (2001), Peer Instruction: Ten years of experience and results. En American Journal of Physics, vol. 69, pp. 970-977. Deal, A. (2007). Classroom Response Systems. A Teaching with Technology White Paper, Carnegie Mellon. Recuperado de http://www.cmu.edu/teaching. Fecha de acceso, noviembre de 2011. Dubinsky, E. y Harel, G. (1992), The nature of the process conception of function. En Harel, G. y Dubinsky, E. (Eds.), The concept of function: Aspects of epistemology and pedagogy, Washington, MAA Notes, 25, pp. 85-106 Duncan, D. (2005). Clickers in the Classroom, San Francisco, Pearson. Duschl, R. A. (2000). Making the nature of science explicit. En Millar, R., Leach, J., y Osborne, J. (Eds.), Improving Science Education. The contribution of Research. Buckingham, Open University Press, pp. 187-206. D’Inverno, R., Davis, H. y White, S. (2003). Using a personal response system for promoting student interaction. En Teaching Mathematics and Its Applications, 22 (4), pp. 163-169. Ferguson, G. A. y Takane, Y. (1989), Statistical analysis in psychology and education, London, McGraw Hill. Ferrini-Mundi, J., y Graham, K. (1994). Research in calculus learning: Understanding of limits, derivatives and integrals. En Kaput, J. y Dubinsky E. (Eds.), Research issues in undergraduate mathematics learning: Preliminary analysis and results, MAA Notes 33, Washington, DC: MAA, pp. 31-45. Franke, M. L., Kazemi, E. y Battey, D. (2007). Mathematics teaching and classroom practice. En Lester, F. K. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning, Charlotte, NC, NCTM, pp. 225-256. Gainsburg, J. (2003). The mathematical behavior of structural engineers. Doctoral dissertation, Stanford University. Gravemeijer, K. (1994). Educational Development and Developmental Research in Mathematics Education. En Journal for Research in Mathematics Education, 5, pp. 453-471. Guershon, H. y Trgalová, J. (1996). Higher Mathematics Education. En Bishop, A. J., Clements K., Keitel, C., Kilpatrick, J. y Laborde, C. (Eds.), International Handbook of Mathematics Education, The Netherlands: Kluwer Academic Publishers, pp. 675-700. Hughes-Hallett, D. (1991). Visualization and Calculus Reform. En Zimmermann, W. y Cunningham, S. (Eds.), Visualization in Teaching and Learning Mathematicas, MAA Notes, vol. 19, pp. 121-126. Hughes-Hallett, D., Frazer, P., Gleason, A. M. et al. (2010). Applied Calculus: ConcepTests, NJ, John Wiley and Sons. Hoyles, C. (1993). Microworlds/Schoolworlds: The Transformation of a Innovation. En Keitel, C. y Ruthven, K. (Eds.), Learning Through Computers: Mathematics and Educational Technology, Berlin, Springer Verlag, pp.1-17. Keller, C., Finkelstein, N., Perkins, K., Pollock, S., Turpen, C. y Dubson, M. (2007). Research-based Practices For Effective Clicker Use. En Hsu, L. Henderson, C. y McCullough, L. (Eds), Physics Education Research Conference. American Institute of Physics, pp. 128-215. King, S. O. y Robinson, C. L.(2009). Pretty Lights and maths! Increasing student engagement and enhancing learning through the use of electronic voting systems. En Computers and Education, vol. 53, pp. 189-199. Lampert, M. (2001). Teaching problems and the problems of teaching, New Heaven, GT, Yale University Press. Lesh, R. y Zawojewski, J. (2007). Problem Solving and Modeling. En Lester, F. K. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning, Charlotte, NC, NCTM, pp. 763-804. Manzanares, A. (2008). Sobre el Aprendizaje Basado en Problemas. En Escribano, A. y Del Valle, A. (Eds.), El Aprendizaje Basado en Problemas, Madrid, Narcea, pp. 19-28. Mazur, E. (1997). Peer Instruction: A User’s Manual, NJ, Englewood Cliffs, Prentice Hall. Miller, R. L., Santana-Vega, E. y Terrell, M. S. (2006). Can good questions and peer discussion improve calculus instruction? En Primus, vol. 16, núm 3, pp. 1-9. Moise, E. E. (1984). Mathematics, Computation and Psychic Intelligence. En Curriculum Review, 24 (1), pp. 73-75. Morales, P. y Landa, V. (2004). Aprendizaje Basado en Problemas Problem–Based Learning. En Theoria, vol. 13, pp. 145-157. Mundy, J. (1984). Analysis of Errors of First Year Calculus Students. En Bell, A., Low, B. y Kilpatrick, J. (Eds.), Theory, Research and Practice in Mathematics Education, Proceedings ICME-5, pp. 170-172. National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics, Reston, VA, NCTM. National Research Council (1995). National Standards for Science Education, Whashington DC, National Academy Press. Orton, A. (1983). Students’ understanding of integration. En Educational Studies in Mathematics, vol. 14, pp. 1-18. Parris, R. (2011). Winplot. Recuperado de http://math.exeter.edu/rparris/winplot.html. Fecha de acceso, octubre de 2011. Pease, M. y Kuhn, D. (2011). Experimental Analysis of the Effective Components of Problem-Based Learning. En Science Education, 95 (1), pp. 57–86. Perkins, D. N., Simmons, R., y Tishman S. (1990). Teaching cognitive and metacognitive strategies. En Journal of Structural Learning, 10 (4), pp. 285-292. Peterson, W. J. (1987). Calculus Reform: Catching the Wave? En Science News, 132 (20), p. 317. Robert, A. (1982). Adquisition de la notion de convergence des suites numériques dans lénseignement supérieur, Université de Paris 7, Tesis Doctoral. Robert, A. (1987). De quelques spécificités de l ́enseignement des mathématiques dans lénseignement post-obligatoire. En Cahier de Didactique de mathématiques, núm 7, IREM, Paris 7. Rogalski, M. (1990). Quels étudiants, quels objectifs d ́enseignement?, en Enseigner Autrement les Mathématiques. En DEUG a Première année, Principes et Réalisations, Brochure de la Comision Inter-IREM Université, pp. 4-8. Scharzenberger, R. L. E. y Tall, D. (1978). Conflicts in the learning of real number and limits. En Mathematics Teaching, vol. 82, pp. 44-49. Schneider, M. (1993). A way to analyse several difficulties the pupils meet with in calculus. En Artigue, M. y Ervynck, G. (Eds.), Proceedings of Working Group 3 on Students’ Difficulties in Calculus, ICME-7, Québec, Canadá, pp. 31-34. Sierpinska, A. (1985). Obstacles Épistemologiques Relatifs à la Notion de Limite. En Recherches en didactique des Mathèmatiques, 6 (1), pp. 5-67 Sierpinska, A. (1992). Theoretical perspectives for development of the function concept. En Harel, G. y Dubinsky, E. (Eds), The concept of function: Aspects of Epistemology and Pedagogy, MAA Notes, 25, pp. 23-58. Skemp, R. R. (1971). The Psychology of Learning Mathematics, London, Pelican. Spillane, J. P. y Zeuli, J. S. (1999). Reform and teaching: Exploring patterns of practice in the context of national and state mathematics reform. En Educational Evaluation and Policy Analysis, vol. 21, pp. 1-27. Stepien, W. J. (1993). Problem-based Learning: As Authentic as It Gets. En Educational Leadership, 50 (7), pp. 25-28. Tall, D. (1996), Chapter 8: Functions and Calculus. En Bishop, A. J., Clements, M. A., Keitel, C., Kilpatrick, J. y Laborde, C. (Eds), International Handbook of Mathematics Education, Dordrecht, Kluwer academic Publishers, pp. 289-325. Thomas, M. O. J. y Holton, D. (2003). Technology as a Tool for Teaching Undergraduade Mathematics. En Bishop, A. J., Clements, M. A., Keitel, C., Kilpatrick, J. y Leung, F. K. S. (Eds.), Second International Handbook of Mathematics Education, Dordrecht, Kluwer academic Publishers, pp. 351-394. Thompson, P. W. (1987). Mathematical Microworld and Intelligent Computer Assisted Instruction. En Kearsley, G. R., (Ed.), Artificial Intelligence and Instruction: Applications and Methods, New York, Addison-Wesley, pp. 83-109. Vinner, S. (1983). Concept definition, concept image and the notion of function. En The International Journal of Mathematical Education in Science and Technology, vol. 14, pp. 293-305. Yerushalmy, M. y Swidan, O. (2012). Signifying the accumulation graph in a dynamic and multi-representation environment. En Educational Studies in Mathematics, vol. 80, pp. 287-306. Zbiek, R. M., Heid, M. K. y Blume, G. W. (2007). Research on technology in mathematics education. En Lester, F. K. (Ed.), Second Handbook of Research on Mathematics Teaching and Learning, Charlotte, NC, NCTM, pp. 1169-1206.