Teoría y métodos para la investigación de la racionalidad de la práctica en la enseñanza de las matemáticas
Tipo de documento
Autores
Lista de autores
Herbst, Patricio
Resumen
Este artículo sintetiza en castellano un programa de investigación en la racionalidad de la práctica de la enseñanza de las matemáticas, partiendo de la problemática de la toma de decisiones en el salón de clases. Se proveen referencias a artículos escritos en inglés durante los pasados 15 años, que dan cuenta de investigaciones en aspectos específicos de aquella racionalidad. Se definen las nociones de transacción de instrucción, situación de instrucción, norma de una situación, y obligación profesional, y luego se describen instru- mentos diseñados para medir el grado en el que los maestros reconocen las normas de instrucción y las obligaciones profesionales. Se ilustra cómo funcionan esos constructos mediante el esbozo de algunas preguntas de investigación.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Conocimiento | Contextos o situaciones | Deductivo | Geometría | Normas socio-culturales
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Referencias
Balacheff, N. (1988). Aspects of Proof in Pupils’ Practice of School Mathematics. In D. Pimm (Ed), Mathematics, teachers and children. London: Hodder Stoughton. Ball, D. L., & Forzani, F. M. (2011). Building a Common Core for learning to teach and connecting professional learning to practice. American Educator, 35(2), 17-21, 38-39. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching what Makes it Special? Journal of Teacher Education, 59(5), 389-407. Boileau, N., Dimmel, J.K., & Herbst, P. G. (2016, November). Teachers’ Recognition of the Diagrammatic Register and its Relationship with their Mathematical Knowledge for Teaching. In M.B. Wood, E.E. Turner, M. Civil, & J.A. Eli (Eds.), Proceedings of the Thirty-Eighth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, Arizona. http://hdl.handle.net /2027.42/137972. Boileau, N., & Herbst, P. G. (2015, November). Teachers’ expectations about Geometric Calculations in High School Geometry. In T.G. Bartell, K.N. Bieda, R.T. Putnam, K. Bradfield & H. Dominguez (Eds.), Proceedings of the Thirty-Seventh Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education East Lansing, MI. http://hdl.handle.net/2027.42/137971. Bourdieu, P. (1990). The Logic of Practice. Stanford, CA: Stanford University Press. Bourdieu, P. (1998). Practical Reason: On the Theory of Action. Stanford, CA: Stanford University Press. Brousseau, G. (1997). Theory of Didactical Situations in Mathematics: Didactique des Mathematiques 1970-1990 (Ed. & Trans. by N. Balacheff, M. Cooper, R. Sutherland, & V.Warfield). Dordrecht, Netherlands: Kluwer. Bryk, A., Gomez, L., Grunow, A., & LeMahieu, P. (2015). Learning to Improve: How America’s Schools Can Get Better at Getting Better. Cambridge, MA: Harvard. Bush, G. W. (2002). No Child Left Behind, Act of 2001, Pub. L. No. 107 110, § 115. Stat, 1425, 107-110. Chazan, D. & Herbst, P. (2012). Animations of Classroom Interaction: Expanding the Boundaries of Video Records of Practice. Teachers’ College Record, 114(3). Chazan, D., Herbst, P., & Clark, L. (2016). Research on the Teaching of Mathematics: A Call to Theorize the Role of Society and Schooling in Mathematics. In D. Gitomer & C. Bell (Eds.), Handbook of research on teaching (5th ed., pp. 1039-1097). Washington, DC: AERA. Chevallard, Y. (1992). La transposition didactique: Du savoir savant au savoir enseignée .(2nd.ed). Grenoble: La Pensée Sauvage. Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, Instruction, and Research. Educational Evaluation and Policy Analysis, 25(2), 119-142. Dimmel, J. & Herbst, P. (2017). Secondary Mathematics Teachers’ Expectations of Student Communication Practices when doing Proofs in Geometry. Teaching and Teacher Education, 68, 151-160. Dimmel, J. & Herbst, P. (2018). What Details do Teachers Expect from Students’ Proofs? A study of routines for checking proofs. Journal for Research in Mathematics Education, 49(3), 261-291. Doxiadis, A., Papadimitriou, C. H., Papadatos, A., & Di Donna, A. (2010). Logicomix: An Epic Search for Truth. New York: Bloomsbury. Erickson, A. & Herbst, P. (2016, online first). Will Teachers Create Opportunities for Discussion when Teaching Proof in a Geometry Classroom? International Journal of Mathematics and Science Education. Goffman, E. (1974). Frame Analysis: An Essay on the Organization of Experience. Boston: Northeastern University Press. Herbst, P. (2003). Using Novel Tasks to Teach Mathematics: Three Tensions Affecting the Work of the Teacher. American Educational Research Journal, 40, 197-238. Herbst, P. (2005). Knowing About “Equal Area” While Proving a Claim about Equal Areas. Recherches en Didactique des Mathématiques, 25, 11-56. Herbst, P. (2006). Teaching Geometry with Problems: Negotiating Instructional Situations and Mathematical Tasks. Journal for Research in Mathematics Education, 37, 313-347. Herbst, P., Aaron, W., & Chieu, V. M. (2013). LessonSketch: An Environment for Teachers to Examine Mathematical Practice and Learn about its Standards. In D. Polly (Ed.), Common Core Mathematics Standards and Implementing Digital Technologies (pp. 281-294). Hershey, PA: IGI Global. Herbst, P. & Chazan, D. (2012). On the Instructional Triangle and Sources of Justification for Actions in Mathematics Teaching. ZDM The International Journal of Mathematics Education, 44(5), 601-612. Herbst, P. & Chazan, D. (2015). Using Multimedia Scenarios Delivered Online to Study Professional Knowledge Use in Practice. International Journal of Research and Method in Education, 38(3), 272-287. Herbst, P., Chazan, D., Kosko, K., Dimmel, J. & Erickson, A. (2016). Using Multimedia Ques- tionnaires to Study Influences on the Decisions Mathematics Teachers Make in Instructional Situations. ZDM The International Journal of Mathematics Education, 48, 167-183. Herbst, P., Chen, C., Weiss, M., & González, G., with Nachlieli, T., Hamlin, M., & Brach, C. (2009). “Doing proofs” in Geometry Classrooms. In M. Blanton, D. Stylianou, & E. Knuth (Eds.), Teaching and Learning of Proof across the Grades: A K-16 Perspective (pp. 250-268). New York: Routledge. Herbst, P., Dimmel, J., Erickson, A., Ko, I., & Kosko, K. (2014, July). Mathematics Teachers’ Recognition of an Obligation to the Discipline and its Role in the Justification of Instructional Actions. In C. Nicol, P. Liljedahl, S. Oesterle, & D. Allen (Eds.), Proceedings of the 38th annual meeting of the International Group for the Psychology of Mathematics Education and the 36th annual meeting of the North American Chapter of PME (Vol. 3, pp. 273-280). Vancouver, Canada: Simon Fraser University. Herbst, P., & Kosko, K. (2014a). Mathematical Knowledge for Teaching and its Specificity to High School Geometry Instruction. In J. Lo, K. R. Leatham, & L. R. Van Zoest (Eds.), Research Trends in Mathematics Teacher Education (pp. 23-45). New York, NY: Springer. Herbst, P. & Kosko, K. (2014b). Using Representations of Practice to Elicit Mathematics Teachers’ Tacit Knowledge of Practice: A Comparison of Responses to Animations and Videos. Journal of Mathematics Teacher Education, 17(6), 515-537. Herbst, P., Kosko, K., & Dimmel, J. (2013, November). How are Geometric Proof Problems Presented? Conceptualizing and Measuring Teachers’ Recognition of the Diagrammatic Register. In Martinez, M. & Castro Superfine, A (Eds.). Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 179-186). Chicago, IL: University of Illinois at Chicago. Herbst, P., Nachlieli, T., & Chazan, D. (2011). Studying the Practical Rationality of Mathematics Teaching: What Goes into “Installing” a Theorem in Geometry? Cognition and Instruction, 29(2), 218-255. Hsu, H. Y., & Silver, E. A. (2014). Cognitive Complexity of Mathematics Instructional Tasks in a Taiwanese Classroom: An Examination of Task Sources. Journal for Research in Mathematics Education, 45(4), 460-496. Kilpatrick, J. (1990). Review: Apples and Oranges Again: Reviewed Works: The IEA Study of Mathe- matics I: Analysis of Mathematics Curricula by Kenneth J. Travers & Ian Westbury; The IEA Study of Mathematics II: Contexts and Outcomes of School Mathematics by David F. Robitaille & Robert A. Garden. Journal for Research in Mathematics Education, 21(5), 416-424.1. Manders, K. (2008). The Euclidean Diagram. In: Mancosu, P. (Ed.) The Philosophy of Mathematical Practice (pp. 80-133). Oxford: OUP. (Original work dated 1995). Mehan, H., & Wood, H. (1975). The Reality of Ethnomethodology. Malabar, FL; Krieger. Nachlieli, T. & Herbst, P. with González, G. (2009). Seeing a Colleague Encourage a Student to Make an Assumption While Proving: What Teachers Put to Play in Casting an Episode of Geometry Instruction. Journal for Research in Mathematics Education, 40(4), 427-459. Ottaviani, J. & Purvis, L. (2016). The Imitation Game: Alan Turing decoded. New York: Abrams. Weiss, M., Herbst, P., & Chen, C. (2009). Teachers’ Perspectives on “Authentic Mathematics” and the Two-column Proof Form. Educational Studies in Mathematics, 70 (3), 275-293. Zazkis, R. & Herbst, P. (Eds, 2018). Scripting Approaches in Mathematics Education: Mathematical Dialogues in Research and Practice. New York: Springer.