Matemáticas y neurociencias: una aproximación al desarrollo del pensamiento matemático desde una perspectiva biológica
Tipo de documento
Autores
Lista de autores
Vargas, Rafael
Resumen
En el presente artículo se realiza una revisión sobre la investigación que desde las neurociencias se realiza para entender cómo se desarrolla el pensamiento matemático. Se muestra las dos formas de pensamiento matemático: uno antiguo y común a muchas especies animales: la estimación y otro propio de la especie humana y relacionado con el lenguaje: el pensamiento matemático formal. Ambas son fundamentales para un adecuado pensamiento matemático. Para su desarrollo se requiere de la educación, pero alteraciones en el desarrollo cerebral presentes en autismo y síndrome de Turner producen incapacidad para desarrollar un pensamiento matemático adecuado.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Contenido | Desde disciplinas académicas | Pensamientos matemáticos | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
36
Rango páginas (artículo)
37-46
ISSN
18150640
Referencias
Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large number discrimination by mosquitofish. PloS one, 5(12), e15232. doi:10.1371/journal.pone.0015232 Ardila, A. (2006). [The origins of language: an analysis from the aphasia perspective]. Revista de neurologia, 43(11), 690-698. Bongard, S., & Nieder, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proceedings of the National Academy of Sciences, 107(5), 2277-2282. doi:10.1073/pnas.0909180107 Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288-298. Butterworth, B. (2000). The Mathematical Brain (New Ed.). Papermac. Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large number discrimination by mosquitofish. PloS one, 5(12), e15232. doi:10.1371/journal.pone.0015232 Ardila, A. (2006). [The origins of language: an analysis from the aphasia perspective]. Revista de neurologia, 43(11), 690-698. Bongard, S., & Nieder, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proceedings of the National Academy of Sciences, 107(5), 2277-2282. doi:10.1073/pnas.0909180107 Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288-298. Butterworth, B. (2000). The Mathematical Brain (New Ed.). Papermac. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science (New York, N.Y.), 332(6033), 1049-1053. doi:10.1126/science.1201536 Cantlon, J. F. (2012). Math, monkeys, and the developing brain. Proceedings of the National Academy of Sciences, 109 (Supplement_1), 10725-10732 Doi:10.1073/pnas.1201893109 Castro-Cañizares, D., Estévez-Pérez, N., & Reigosa-Crespo, V. (2009). [Contemporary cognitive theories about developmental dyscalculia]. Revista de neurologia, 49(3), 143- 148. Cohen Kadosh, R., Sagiv, N., Linden, D. E. J., Robertson, L. C., Elinger, G., & Henik, A. (2005). When blue is larger than red: colors influence numerical cognition in synesthesia. Journal of cognitive neuroscience, 17(11), 1766-1773. doi:10.1162/089892905774589181 Collette, J.-P. (1993). Historia de las matemáticas. Siglo XXI de España Editores. De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 57(3), 771-781. doi:10.1016/j.neuroimage.2010.12.037 Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science, 284(5416), 970-974. doi:10.1126/science.284.5416.970 Fischer, M. H., & Brugger, P. (2011). When Digits Help Digits: Spatial-Numerical Associations Point to Finger Counting as Prime Example of Embodied Cognition. Frontiers in Psychology, 2. doi:10.3389/fpsyg.2011.00260 Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: evidence from Pirahã language and cognition. Cognition, 108(3), 819-824. doi:10.1016/j.cognition.2008.04.007 Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1–2), 43-74. doi:10.1016/0010-0277(92)90050-R Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. Science (New York, N.Y.), 306(5695), 496-499. doi:10.1126/science.1094492 Hubbard, E. M., & Ramachandran, V. S. (2005). Neurocognitive mechanisms of synesthesia. Neuron, 48(3), 509-520. doi:10.1016/j.neuron.2005.10.012 Hunt, S., Low, J., & Burns, K. C. (2008). Adaptive numerical competency in a food-hoarding songbird. Proceedings Biological sciences / The Royal Society, 275(1649), 2373-2379. doi:10.1098/rspb.2008.0702 Kaufmann, L. (2008). Dyscalculia: neuroscience and education. Educational research; a review for teachers and all concerned with progress in education, 50(2), 163-175. doi:10.1080/00131880802082658 Kaufmann, L., & von Aster, M. (2012). The Diagnosis and Management of Dyscalculia. Deutsches Ärzteblatt International, 109(45), 767-778. doi:10.3238/arztebl.2012.0767 Lourenco, S. F., & Longo, M. R. (2010). General Magnitude Representation in Human Infants. Psychological Science, 21(6), 873-881. doi:10.1177/0956797610370158 Moeller, K., Martignon, L., Wessolowski, S., Engel, J., & Nuerk, H.-C. (2011). Effects of finger counting on numerical development - the opposing views of neurocognition and mathematics education. Frontiers in psychology, 2, 328. doi:10.3389/fpsyg.2011.00328 Otte, M. (2003). Complementarity, sets and numbers. Educational Studies in Mathematics, 53(3), 203-228. doi:10.1023/A:1026001332585 Owen, E. R., Baumgartner, H. A., & Rivera, S. M. (2013). Using infrared eye-tracking to explore ordinal numerical processing in toddlers with Fragile X Syndrome. Journal of neurodevelopmental disorders, 5(1), 1. doi:10.1186/1866-1955-5-1 Pahl, M., Si, A., & Zhang, S. (2013). Numerical cognition in bees and other insects. Frontiers in psychology, 4, 162. doi:10.3389/fpsyg.2013.00162 Park, J., Park, D. C., & Polk, T. A. (2012). Parietal Functional Connectivity in Numerical Cognition. Cerebral Cortex. doi:10.1093/cercor/bhs193 Price, G. R., Mazzocco, M. M. M., & Ansari, D. (2013). Why mental arithmetic counts: brain activation during single digit arithmetic predicts high school math scores. The Journal of neuroscience, 33(1), 156-163. doi:10.1523/JNEUROSCI.2936-12.2013 Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science (New York, N.Y.), 332(6033), 1049-1053. doi:10.1126/science.1201536 Cantlon, J. F. (2012). Math, monkeys, and the developing brain. Proceedings of the National Academy of Sciences, 109 (Supplement_1), 10725-10732 Doi:10.1073/pnas.1201893109 Castro-Cañizares, D., Estévez-Pérez, N., & Reigosa-Crespo, V. (2009). [Contemporary cognitive theories about developmental dyscalculia]. Revista de neurologia, 49(3), 143- 148. Cohen Kadosh, R., Sagiv, N., Linden, D. E. J., Robertson, L. C., Elinger, G., & Henik, A. (2005). When blue is larger than red: colors influence numerical cognition in synesthesia. Journal of cognitive neuroscience, 17(11), 1766-1773. doi:10.1162/089892905774589181 Collette, J.-P. (1993). Historia de las matemáticas. Siglo XXI de España Editores. De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 57(3), 771-781. doi:10.1016/j.neuroimage.2010.12.037 Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science, 284(5416), 970-974. doi:10.1126/science.284.5416.970 Fischer, M. H., & Brugger, P. (2011). When Digits Help Digits: Spatial-Numerical Associations Point to Finger Counting as Prime Example of Embodied Cognition. Frontiers in Psychology, 2. doi:10.3389/fpsyg.2011.00260 Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: evidence from Pirahã language and cognition. Cognition, 108(3), 819-824. doi:10.1016/j.cognition.2008.04.007 Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44(1–2), 43-74. doi:10.1016/0010-0277(92)90050-R Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. Science (New York, N.Y.), 306(5695), 496-499. doi:10.1126/science.1094492 Hubbard, E. M., & Ramachandran, V. S. (2005). Neurocognitive mechanisms of synesthesia. Neuron, 48(3), 509-520. doi:10.1016/j.neuron.2005.10.012 Hunt, S., Low, J., & Burns, K. C. (2008). Adaptive numerical competency in a food-hoarding songbird. Proceedings Biological sciences / The Royal Society, 275(1649), 2373-2379. doi:10.1098/rspb.2008.0702 Kaufmann, L. (2008). Dyscalculia: neuroscience and education. Educational research; a review for teachers and all concerned with progress in education, 50(2), 163-175. doi:10.1080/00131880802082658 Kaufmann, L., & von Aster, M. (2012). The Diagnosis and Management of Dyscalculia. Deutsches Ärzteblatt International, 109(45), 767-778. doi:10.3238/arztebl.2012.0767 Lourenco, S. F., & Longo, M. R. (2010). General Magnitude Representation in Human Infants. Psychological Science, 21(6), 873-881. doi:10.1177/0956797610370158 Moeller, K., Martignon, L., Wessolowski, S., Engel, J., & Nuerk, H.-C. (2011). Effects of finger counting on numerical development - the opposing views of neurocognition and mathematics education. Frontiers in psychology, 2, 328. doi:10.3389/fpsyg.2011.00328 Otte, M. (2003). Complementarity, sets and numbers. Educational Studies in Mathematics, 53(3), 203-228. doi:10.1023/A:1026001332585 Owen, E. R., Baumgartner, H. A., & Rivera, S. M. (2013). Using infrared eye-tracking to explore ordinal numerical processing in toddlers with Fragile X Syndrome. Journal of neurodevelopmental disorders, 5(1), 1. doi:10.1186/1866-1955-5-1 Pahl, M., Si, A., & Zhang, S. (2013). Numerical cognition in bees and other insects. Frontiers in psychology, 4, 162. doi:10.3389/fpsyg.2013.00162 Park, J., Park, D. C., & Polk, T. A. (2012). Parietal Functional Connectivity in Numerical Cognition. Cerebral Cortex. doi:10.1093/cercor/bhs193 Price, G. R., Mazzocco, M. M. M., & Ansari, D. (2013). Why mental arithmetic counts: brain activation during single digit arithmetic predicts high school math scores. The Journal of neuroscience, 33(1), 156-163. doi:10.1523/JNEUROSCI.2936-12.2013