La comprensión de la relación inversa en la división en edades tempranas
Tipo de documento
Autores
Lista de autores
Fuentes, Mariana y Olmos, Patricia
Resumen
El objetivo de este trabajo es contribuir al estudio de la génesis de la comprensión de la relación inversa entre los términos de la división en una muestra de niños de primer y segundo curso de educación primaria en una escuela catalana, a través de las justificaciones que los niños dan a sus respuestas a los problemas. Se ha diseñado una intervención en función de dos condiciones de justificación -de la propia respuesta y de la respuesta del adulto- aplicada a una muestra de 45 niños, 21 de primero y 24 de segundo, con edades entre 7:06 y 8:05. Se realiza un pre-test y dos fases de intervención donde se presentan 16 situaciones problema. Los resultados establecen que los niños de segundo curso cometen menos errores que los de primero y parten de una mejor comprensión de la relación inversa. La tipología de errores varía en función del curso y de las fases del estudio. La justificación por la relación inversa es más frecuente en segundo y en la última fase de intervención. Entre las dos condiciones de feedback, la justificación de la respuesta del adulto es la que mejor favorece la comprensión.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Comprensión | División | Errores | Fuentes de información | Procesos de justificación
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Bakker, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2014). First-graders’ knowledge of multiplicative reasoning before formal instruction in this domain. Contemporary Educational Psychology, 39, 59–73. doi: 10.1016/j.cedpsych.2013.11.001 Brainerd, C.J. (1973). Judgements and explanations as criteria for the presence of cognitive structures. Psychological Bulletin, 79, 172-179. Brown, M. (1981). Numbers operations. In K. M. Hart (Ed), Children’s understanding of Mathematics (pp. 11-16). London: John Murrayp. Bryant, P. (1997). Mathematics understanding in the nursery school years. In T. Nunes, & P. Bryant (Eds.), Learning and Teaching Mathematics: an international perspective (pp. 53-67). New York, NY: Psychology Press. Campbell, S., & Fraser, S. (1997). On preservice teachers’ understandings of division with remainder. In E. Pehkonen (Ed). Proceedings of the 21h Conference of the International Group for the Psychology of Mathematics Education (Vol 1, pp.177-184). Lahti, Finland: PME. Carraher, D. W., & Shliemann, A. D. (1991). Teachers´ guide to divide and conquer software. New York: Sunburst Communications. Cooney, T. J., Grouws, D. A., & Jones, D. (1988). An agenda for research on teaching mathematics. In D. A. Grouws & T. J. Cooney (Eds.), Effective mathematics teaching (pp. 253–261). Reston, VA: National Council of Teachers of Mathematics and Hillsdale, NJ: Erlbaum. Correa, J., Nunes, T., & Bryant, P. (1998). Young children’s understanding of division: The relationship between divison terms in a noncomputational task. Journal of Educational Psychology, 90, 321-329. doi: 10.1037/0022-0663.90.2.321 Desforges, A., & Desforges, C. (1980). Number-based strategies of sharing in young children. Education Studies, 6 (2), 97-109. doi: 10.1080/0305569800060201 Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16 (1), 3-17. doi: 10.2307/748969 Frydman, O., & Bryant, P. E. (1988). Sharing and the understanding of number equivalence by young children. Cognitive Development, 3, 323-339. doi: 10.1016/0885-2014(88)90019-6 Harel, G., & Confrey, J. (1994). The development of multiplicative reasoning in the development of mathematics. New York, NY: New York press. Kouba, V. (1989). Children’s solution strategies for equivalent set multiplication and division work problems. Journal for Research in Mathematics Education, 20 (2), 147-158. doi: 10.2307/749279 Kornilaki, E., & Nunes, T. (2005). Generalising principles in spite of procedural differences: Children’s understanding of division. Cognitive Development, 20, 388-406. doi: 10.1016/j.cogdev.2005.05.004 Lautert, S., Spinillo A., & Correa, J. (2012). Children’s difficulties with division: an intervention study. Educational Research, 3 (5), 447-456. Li, Y., & Silver, E. A. (2000). Can younger students succeed where older students fail? In examination of third graders’solutions of a division with-remainder (DWR) problem. The Journal of Mathematical Behavior, 19, 233- 246. doi: 10.1016/S0732-3123(00)00046-8 Nesher, P. (1988). Multiplicative school word problems: theoretical approaches and empirical findings. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (pp.141-161). Reston, VA: National Council for Teachers of Mathematics, Hillsdale, NJ: Lawrence Erlbaum. Nunes, T. (2008). Understanding rational numbers. Att erövra världen. Grundläggande färdigheter i läsning; skrivning och matematik; 26-27 november 2007; Linköping. Linköping University Electronic Press; Linköpings universitet: 23-52 Nunes, T., & Bryant, P. (1996). Children doing mathematics. Oxford: Blackwell Publishers. Park, J., & Nunes, T. (2001). The development of the concept of multiplication. Cognitive Development, 16, 763-773. doi: 10.1016/S0885-2014(01)00058-2 Siegel, L.S. McCabe, A.E., Brand, J. & Matthews, J. (1978). Evidence for the understanding of class inclusion in preschool children: Linguistic factors and training effects. Child Development, 49, 688-693. Siegler, R. (1995). How Does Change Occur: A Microgenetic study of Number Conservation. Cognitive Psychology, 28, 225-273. doi: 10.1006/cogp.1995.1006 Silver, E.A. (1988). Solving story problems involving division with remainders: the importance of semantic processing and referential mapping. In J. Bergeron, N. Herscovics, & C. Kieran (Eds). Proceedings of the 10th Conference of the International Group for the Psychology of Mathematics Education (Vol 1, pp. 127-133). London, United Kingdom: PME. Silver, E. A., Shapiro, L. J., & Deutsch, A. (1993). Sense making and the solution of division problems involving remainders: an examination of middle school students’ solution processes and their interpretations of solutions. Journal for Research in Mathematics Education, 24 (2), 117- 135. doi: 10.2307/749216 Skoumpoudi, C., & Sofikiti, D. (2009). Young children’s material manipulating strategies in division task. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds). Proceedings of the 33th Conference of the International Group for the Psychology of Mathematics Education (Vol 5, pp. 137-145). Thessaloniki, Greece: PME. Smith, L. (1992). Judgements and justifications: criteria for the attribution of children’s knowledge in Piagetian research. British Journal of Developmental Psychology, 10, 1-23. doi: 10.1111/j.2044-835X.1992.tb00559.x Sophian, C., Garyantes, D., & Chang, C. (1997). When three is less than two: Early developments in children's understanding of fractional quantities. Developmental Psychology, 33, 731-744. doi: 10.1037/0012-1649.33.5.731 Spinillo, A. G., & Lautert, S. L. (2002). Representations and solving procedures in word division problems: comparing formal and informal knowledge in children. In A. D. Cockburn, & E. Nardi (Eds). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education (Vol 1, p. 318). Norwich, United Kingdom: PME. Spinillo, A. G., & Lautert, S. L. (2006). Exploring the role played by the remainder in the solution of division problems. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds). Proceedings of the 30thConference of the International Group for the Psychology of Mathematics Education (Vol 5, pp. 153-162). Praga, Czech Republic: PME. Squire, S., & Bryant, P. (2002). The influence of sharing on children’s initial concept of Division. Journal of Experimental Child Psychology, 81, 1-43. doi: 10.1006/jecp.2001.2640 Stavy, R., & Tirosh, D. (2000). How Students (Mis-) Understand Science and Mathematics: Intuitive Rules. New York, NY: Teachers College Press. Steffe, L. P., & Tzur, R. (1994). Interaction and children’s mathematics. Journal of Research in Childhood Education, 8(2), 99–116. doi: 10.1080/02568549409594859 Thomas, H. & Horten, J.J. (1997). Competency and the class inclusion task: Modeling judgements and justifications. Developmental Psychology, 33(6), 1060-1073. doi: 10.1037/0012-1649.33.6.1060 Tzur, R. (1999). An Integrated Study of Children’s Construction of Improper Fractions and the Teacher’s Role in Promoting That Learning. Journal for Research in Mathematics Education, 30(4), 390–416. Vergnaud, G. (1990). La théorie des champs conceptuels. Récherches en Didactique des Mathématiques, 10(23), 133-170. Vergnaud, G. (1997). The nature of mathematical concepts. In T. Nunes & P. Bryant (Eds.) Learning and teaching mathematics: an international perspective (pp. 5-28). New York, NY: Psychology Press. Yackel, E., Cobb, P., Wood, T., Wheatley, G., & Merkel, G. (1990). The importance of social interaction in children's construction of mathematical knowledge. In T. J. Cooney & C. R. Hirsch (Eds.), Teaching and learning mathematics in the 1990s. 1990 Yearbook of the National Council of Teachers of Mathematics (pp. 12– 21). Reston, VA: National Council of Teachers of Mathematics.