Secuencia didáctica apoyada en tecnología para la construcción del concepto derivada en problemas de optimización
Tipo de documento
Autores
Ansaldo, Julio César | Castro, Felipe de Jesús | Navarro, Lizzeth Aurora | Robles, Alan Daniel
Lista de autores
Navarro, Lizzeth Aurora, Robles, Alan Daniel, Ansaldo, Julio César y Castro, Felipe de Jesús
Resumen
La enseñanza del cálculo basada en el dominio de la algoritmia genera que éste carezca de sentido para los estudiantes y que tengan conceptos pobres de los objetos matemáticos. Es por ello que en el presente trabajo bajo el enfoque cualitativo se plantea una actividad con hoja de trabajo, manipulable físico y archivo de GeoGebra para resolver un problema de optimización de contexto de la vida cotidiana. Se considera como un primer acercamiento a la optimización en cálculo diferencial en Educación Superior. Al concluir el estudio se determinó que la actividad contribuyó a que los estudiantes identificaran las variables involucradas y la pendiente de la recta tangente igual a cero en un punto crítico.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
46
Rango páginas (artículo)
171-187
ISSN
18150640
Referencias
Artigue, M. (1995). La enseñanza de los principios del Cálculo: problemas epistemológicos, cognitivos y didácticos. En Artigue, M., Douady, R., Moreno, L., Gómez, P. (Eds.), Ingeniería Didáctica en Educación Matemática, 97-140. México: "una empresa docente" y Grupo Editorial Iberoamérica. Artigue, M. (1998). Enseñanza y aprendizaje del análisis elemental: ¿Qué se puede aprender de las investigaciones didácticas y los cambios curriculares? Revista Latinoamericana de Investigación en Matemática Educativa [en línea], 1(1), 40-55. Recuperado el 6 de febrero de 2013, de http://www.clame.org.mx/acta.htm Camarena, P. (2009). La matemática en el contexto de las ciencias. Innovación Educativa [en línea], 9(46), 15-25. Recuperado el 8 de febrero de 2013, de http://www.redalyc.org/pdf/1794/179414894003.pdf Cantoral, R. (2001). Enseñanza de la Matemática en la educación superior. Revista Electrónica de Educación Sinéctica [en línea], 19, 3-27. Recuperado el 6 de febrero de 2013, de http://www.redalyc.org/articulo.oa?id=99817935002 Dávila, M. T., Grijalva, A. y Bravo, J. M. (2012). La Derivada a partir de la Resolución de Problemas de Optimización con Apoyo de Geogebra. En Cortés, J. C., Ulloa, R. (Eds.), Uso de Tecnología en Educación Matemática. Investigaciones y Propuestas 2012. Asociación Mexicana de Investigadores del Uso de la Tecnología en Educación Matemática, 212-222. Guadalajara, México: AMIUTEM, A. C. D’Amore, B., Font, V. y Godino, J. D. (2007). La dimensión metadidáctica en los procesos de enseñanza y aprendizaje de la Matemática. Paradigma [en línea], 28(2), 49-77. Recuperado el 21 de abril de 2014, de http://www.ugr.es/~jgodino/funciones-semioticas/dimension_metadidactica_11nov07.pdf Godino, J. D., Batanero, C. y Font, V. (2009). Un enfoque ontosemiótico del conocimiento y la instrucción matemática. Recuperado el 24 de abril de 2014, de http://www.ugr.es/local/jgodino/indice_eos.htm Godino, J. D., Bencomo, D., Font, V. y Wilhelmi, M.R. (2006). Análisis y valoración de la idoneidad didáctica de procesos de estudio de las Matemáticas. Paradigma [en línea], 27(2), 221-252. Recuperado el 22 de abril de 2014, de http://www.ugr.es/~jgodino/funciones-semioticas/idoneidad-didactica.pdf Godino, J. D., Contreras, A. y Font, V. (2006). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición Matemática. Recherches en Didactiques des Mathematiques [en línea], 26(1), 39-88. Recuperado el 22 de abril de 2014, de http://www.ugr.es/~jgodino/siidm/madrid_2004/godino_contreras_font.pdf Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education [en línea], 19(1), 3-25. Recuperado el 8 de febrero de 2013, de http://www.jstor.org/discover/10.2307/749108?sid=21105710277671&uid=2129&u id=70&uid=2&uid=4 Hidalgo, S., Maroto, A. y Palacios, A. (2004). ¿Por qué se rechazan las Matemáticas? Análisis evolutivo y multivariante de actitudes relevantes hacia las Matemáticas. Revista de Educación [en línea], (334), 75-95. Recuperado el 7 de febrero de 2013, de http://www.revistaeducacion.educacion.es/re334/re334_06.pdf Instituto Tecnológico de Sonora. (s.f.). Programa Analítico Cálculo I Plan 2009. Recuperado el 7 de febrero de 2013, de http://saeti.itson.mx/ Malaspina, U. (2007). Intuición, rigor y resolución de problemas de optimización. Revista Latinoamericana de Investigación en Matemática Educativa [en línea], 10(3), 365-400. Recuperado el 3 de marzo de 2013, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-24362007000300004&lng=es&nrm=iso&tlng=es Rodríguez, R. y Zuazua, E. (2002). Enseñar y aprender Matemáticas: del Instituto a la Universidad. Revista de Educación [en línea], (329), 239-256. Recuperado el 6 de febrero de 2013, de http://eprints.ucm.es/9538/ Ruíz, J. (2008). Problemas actuales de la enseñanza aprendizaje de la Matemática. Revista Iberoamericana de Educación [en línea], 3(47), 1-8. Recuperado el 8 de febrero de 2013, de http://www.rieoei.org/deloslectores/2359Socarras-Maq.pdf Salinas, P. y Alanís, J. A. (2009). Hacia un nuevo paradigma en la enseñanza del Cálculo dentro de una institución educativa. Revista Latinoamericana de Investigación en Matemática Educativa [en línea], 12(3), 355-382. Recuperado el 21 de abril de 2014, de http://www.redalyc.org/articulo.oa?id=33511859004 Turégano, P. (1995). El currículum y las dificultades de aprendizaje del Cálculo Infinitesimal. Recuperado el 6 de febrero de 2013, de http://www.uclm.es/ab/educacion/ensayos/pdf/revista10/10_19.pdf Zúñiga, L. (2007). El Cálculo en carreras de Ingeniería: un estudio cognitivo. Revista Latinoamericana de Investigación en Matemática Educativa [en línea], 10(1), 145- 175. Recuperado el 8 de febrero de 2013, de http://www.redalyc.org/articulo.oa?id=33500107