Um modelo teórico de matemática para o ensino do conceito de função a partir de um estudo com professores
Tipo de documento
Autores
Lista de autores
Dominguez, Graça Luzia y Cerqueira, Jonei
Resumen
Nesse estudo, desenvolvemos um modelo teórico de Matemática para o ensino do conceito de função. Utilizamos como aporte teórico, os construtos regras de reconhecimento e realização da teoria do sociólogo Basil Bernstein e como ferramenta metodológica, a estrutura organizacional do estudo do conceito. Os dados foram coletados em uma investigação empírica com um grupo de professores. O modelo foi estruturado nas categorias de realizações (panoramas): tabular, algébrico, máquina de transformação, generalização de padrões, gráfico, diagrama e formal. Estes foram construídos à luz da convergência das regras de realização e reconhecimento. O modelo pode ser empregado tanto como quadro teórico em pesquisas sobre matemática para o ensino, quanto para analisar e gerar uma ampla gama de formas de realizar o conceito de função no ensino nas práticas pedagógicas.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
48
Rango páginas (artículo)
143-167
ISSN
18150640
Referencias
Adler, J.; Davis, Z. (2006). Opening another black box: researching mathematics for teaching mathematics teacher education. Journal for Research in Mathematics Education 37, p. 270-296. Adler, J.; Huillet, D. (2008). The social production of mathematics for teaching. In Sullivan, P.; Wood, T. (eds). International handbook of mathematics teacher education: Vol1. Knowledge and beliefs in mathematics teaching and learning development. Rotterdam, The Netherlands: Sense Publishers, p. 195-222. Adler, J.; Patahuddin, S. M. (2012). Recontexualising items that measure mathematical knowledge for teaching into scenario based interviews: an investigation. Journal of Education, No. 56. Ball, D. L.; Thames, M. H.; Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, p. 389-407. Barwell, R. (2013). Discursive psychology as an alternative perspective on mathematics teacher Knowledge. ZDM Mathematics Education, V. 45, p.595-606. Bernstein, B. (2000). Pedagogy, symbolic control and identity: theory, research, critique. New York: Rowman & Littlefield. Bernstein, B. (2003). Class, codes and control: the structuring of pedagogic discourse. New York: Routledge. Brasil (2002). Ministério da Educação (MEC), Secretaria de Educação Média e Tecnológica (Semtec). PCN + Ensino médio: orientações educacionais complementares aos Parâmetros Curriculares Nacionais – Ciências da Natureza, Matemática e suas Tecnologias. Brasília: MEC/Semtec. Callejo, M. L.; Zapatera, A. (2014). Flexibilidad en la Resolución de Problemas de Identificación de Patrones Lineales en Estudiantes de Educación Secundaria. BOLEMA. v. 28, n.48, p. 64-88. Carraher, D. W.; Martinez, M. V.; Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM Mathematics Education, V. 40, p. 3-22. Chapman, O. (2013). Investigating teachers’ knowledge for teaching mathematics. Journal for Research in Mathematics Education, 16, p. 237-243. Davis, B.; Renert, M. (2009). Mathematisc-for-Teaching as shared dynamic participation. For the Learning of Mathematics. Vol. 29, N. 3, p. 37-43. Davis, B.; Renert, M. (2013). Mathematics for teaching as shared, dynamic participation. For the Learning of Matematics, v. 9, n. 3, p. 37-43. Davis, B.; Renert, M. (2014). The Math Teachers Know: Profund Understanding of Emergent Matematics. Routledge Taylor & Francis Group. 141 p. Davis, B.; Simmt, E. (2006). Mathematics-for-teaching: an ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, v. 61, n. 3, p. 293-319. Doorman, M. et al. (2012). Tool use and development of the function concept: from repeated the function concept: from repeated caculations to functional thinking. International Journal of Science and Mathematics Education. V. 10, I. 6, p. 1243- 1267. Elia, I. et al. (2006). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Science and Mathematics Education. p. 317-333. Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational Studies in Mathematics, V. 21, p. 521-544. Even, R.; Ball, D. (Eds.). (2009). The professional education and development of teachers of mathematics – The 15th ICMI Study. New York, NY: Springer. Grilo, J. S. P. (2014). Da Universidade para a Escola: A Recontextualização de Princípios e Textos do discurso pedagógico de disciplinas específicas da Licenciatura em Matemática. Programa de Pós-Graduação em Educação, Universidade Federal da Bahia, Salvador. Guerrero, L. S.; Ribeiro, C. M. (2014). La formación del profesorado de matemáticas de nivel medio superior en México: una necesidad para la profesionalización docente. Revista Iberoamericana de Producción Académica y Gestión Educativa, v. 1, p. 1-15. Hansson, O. (2006). Studying the views of preservice teachers on the concept of function. Tese de Doutorado. Luleå University of Technology, Suécia. Hitt, F; González-Martin, A. S. (2015). Covariation between variables in a modelling process:The ACODESA (collaborative learning, scientific debate and self- reflection) method. Educational Studies in Mathematics. V. 88, p. 163-187. Hoadley, U. (2006). Analysing pedagogy: the problem of framing. Journal of Education, n. 40, p. 15-34. Disponível em . Acesso em 07 set. 2016. Jones, M. (2006). Demystifying functions: The historical and pedagogical difficulties of the concept of the function. Undergraduate Math Journal, 7 (2), p. 1-20. Kleiner, I. (1993). Functions: Historical and Pedagogic Aspects. Science & Education. Vol 2, p. 183-209. Mavrikis, M. et al. (2012). Sowing the seeds of algebraic generalization: designing epistemic a_ordances for an intelligent microworld. Journal of Computer Assisted Learning, Wiley. Nachlieli, T., Tabach, M. (2012). Growing mathematical objects in the classroom-the case of function. International Journal of Educational Research, 51/52, p. 10-27. Rhoads, K.; Weber, K. (2016). Exemplary high school mathematics teacher’s reflection on teaching: A situated cognition perspective on content knowledge. International Journal of Education, V. 78, p. 1-12. Ronda, E. (2015). Growth points in linking representations of function: a research- based framework. Educational Studies in Mathematics, n. 90, p. 303-319. Sajka, M. (2003). A secondary school student’s understanding of the Concept of function – a case study. Educational Studies in Mathematics, n. 53, p. 229-254. Sierpinska, A. (1992). On understanding the notion of function. In E. Dubinsky & G. Harel (Eds.), The concept of function. Aspects of epistemology and pedagogy. United States: The Mathematical Association of America, p. 25-58. Steele, M.; Hillen, A. F.; Smith, M. S. (2013). Developing mathematical knowledge for teaching in a methods course: the case of function. Journal of Mathematics Teacher Education, v. 16, I. 6, p. 451-483. Tabach, M.; Nachlieli, T. (2015). Classroom engagement towards using definitionsfor developing mathematical objects: the case of function. Educational Studies in Mathematics, n.90, p. 163-187. Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, n.93, p. 333-361.